Assign Cookies – LeetCode Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.
Assume you are an awesome parent and want to give your children some cookies. But, you should give each child at most one cookie.
Each child i
has a greed factor g[i]
, which is the minimum size of a cookie that the child will be content with; and each cookie j
has a size s[j]
. If s[j] >= g[i]
, we can assign the cookie j
to the child i
, and the child i
will be content. Your goal is to maximize the number of your content children and output the maximum number.
Example 1:
Input: g = [1,2,3], s = [1,1] Output: 1 Explanation: You have 3 children and 2 cookies. The greed factors of 3 children are 1, 2, 3. And even though you have 2 cookies, since their size is both 1, you could only make the child whose greed factor is 1 content. You need to output 1.
Example 2:
Input: g = [1,2], s = [1,2,3] Output: 2 Explanation: You have 2 children and 3 cookies. The greed factors of 2 children are 1, 2. You have 3 cookies and their sizes are big enough to gratify all of the children, You need to output 2.
Constraints:
1 <= g.length <= 3 * 104
0 <= s.length <= 3 * 104
1 <= g[i], s[j] <= 231 - 1
C++ Assign Cookies LeetCode Solution
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(g.begin(),g.end());
sort(s.begin(),s.end());
int i = 0, j=0;
while(i<g.size() && j<s.size()){
if(s[j]>=g[i])
i++; // when the child get the cookie, foward child by 1
j++;
}
return i;
}
Java Assign Cookies LeetCode Solution
Arrays.sort(g);
Arrays.sort(s);
int i = 0;
for(int j=0;i<g.length && j<s.length;j++) {
if(g[i]<=s[j]) i++;
}
return i;
Python 3 Assign Cookies LeetCode Solution
class Solution(object):
def findContentChildren(self, g, s):
"""
:type g: List[int]
:type s: List[int]
:rtype: int
"""
g.sort()
s.sort()
childi = 0
cookiei = 0
while cookiei < len(s) and childi < len(g):
if s[cookiei] >= g[childi]:
childi += 1
cookiei += 1
return childi
Array-1180
String-562
Hash Table-412
Dynamic Programming-390
Math-368
Sorting-264
Greedy-257
Depth-First Search-256
Database-215
Breadth-First Search-200
Tree-195
Binary Search-191
Matrix-176
Binary Tree-160
Two Pointers-151
Bit Manipulation-140
Stack-133
Heap (Priority Queue)-117
Design-116
Graph-108
Simulation-103
Prefix Sum-96
Backtracking-92
Counting-86
Sliding Window-73
Linked List-69
Union Find-66
Ordered Set-48
Monotonic Stack-47
Recursion-43
Trie-41
Binary Search Tree-40
Divide and Conquer-40
Enumeration-39
Bitmask-37
Queue-33
Memoization-32
Topological Sort-31
Geometry-30
Segment Tree-27
Game Theory-24
Hash Function-24
Binary Indexed Tree-21
Interactive-18
Data Stream-17
String Matching-17
Rolling Hash-17
Shortest Path-16
Number Theory-16
Combinatorics-15
Randomized-12
Monotonic Queue-9
Iterator-9
Merge Sort-9
Concurrency-9
Doubly-Linked List-8
Brainteaser-8
Probability and Statistics-7
Quickselect-7
Bucket Sort-6
Suffix Array-6
Minimum Spanning Tree-5
Counting Sort-5
Shell-4
Line Sweep-4
Reservoir Sampling-4
Eulerian Circuit-3
Radix Sort-3
Strongly Connected Componen-t2
Rejection Sampling-2
Biconnected Component-1