Battleships in a Board – LeetCode Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.
Given an m x n
matrix board
where each cell is a battleship 'X'
or empty '.'
, return the number of the battleships on board
.
Battleships can only be placed horizontally or vertically on board
. In other words, they can only be made of the shape 1 x k
(1
row, k
columns) or k x 1
(k
rows, 1
column), where k
can be of any size. At least one horizontal or vertical cell separates between two battleships (i.e., there are no adjacent battleships).
Example 1:
Input: board = [["X",".",".","X"],[".",".",".","X"],[".",".",".","X"]] Output: 2
Example 2:
Input: board = [["."]] Output: 0
Constraints:
m == board.length
n == board[i].length
1 <= m, n <= 200
board[i][j]
is either'.'
or'X'
.
C++ Battleships in a Board LeetCode Solution
int countBattleships(vector<vector<char>>& board) {
if (board.empty() || board[0].empty()) { return 0; }
int m = board.size(), n = board[0].size(), cnt = 0;
for (int r = 0; r < m; r++)
for (int c = 0; c < n; c++)
cnt += board[r][c] == 'X' && (r == 0 || board[r - 1][c] != 'X') && (c == 0 || board[r][c - 1] != 'X');
return cnt;
}
Java Battleships in a Board LeetCode Solution
public int countBattleships(char[][] board) {
int m = board.length;
if (m==0) return 0;
int n = board[0].length;
int count=0;
for (int i=0; i<m; i++) {
for (int j=0; j<n; j++) {
if (board[i][j] == '.') continue;
if (i > 0 && board[i-1][j] == 'X') continue;
if (j > 0 && board[i][j-1] == 'X') continue;
count++;
}
}
return count;
}
Python 3 Battleships in a Board LeetCode Solution
class Solution(object):
def countBattleships(self, board):
if len(board) == 0: return 0
m, n = len(board), len(board[0])
count = 0
for i in range(m):
for j in range(n):
if board[i][j] == 'X' and (i == 0 or board[i-1][j] == '.') and (j == 0 or board[i][j-1] == '.'):
count += 1
return count
Array-1180
String-562
Hash Table-412
Dynamic Programming-390
Math-368
Sorting-264
Greedy-257
Depth-First Search-256
Database-215
Breadth-First Search-200
Tree-195
Binary Search-191
Matrix-176
Binary Tree-160
Two Pointers-151
Bit Manipulation-140
Stack-133
Heap (Priority Queue)-117
Design-116
Graph-108
Simulation-103
Prefix Sum-96
Backtracking-92
Counting-86
Sliding Window-73
Linked List-69
Union Find-66
Ordered Set-48
Monotonic Stack-47
Recursion-43
Trie-41
Binary Search Tree-40
Divide and Conquer-40
Enumeration-39
Bitmask-37
Queue-33
Memoization-32
Topological Sort-31
Geometry-30
Segment Tree-27
Game Theory-24
Hash Function-24
Binary Indexed Tree-21
Interactive-18
Data Stream-17
String Matching-17
Rolling Hash-17
Shortest Path-16
Number Theory-16
Combinatorics-15
Randomized-12
Monotonic Queue-9
Iterator-9
Merge Sort-9
Concurrency-9
Doubly-Linked List-8
Brainteaser-8
Probability and Statistics-7
Quickselect-7
Bucket Sort-6
Suffix Array-6
Minimum Spanning Tree-5
Counting Sort-5
Shell-4
Line Sweep-4
Reservoir Sampling-4
Eulerian Circuit-3
Radix Sort-3
Strongly Connected Componen-t2
Rejection Sampling-2
Biconnected Component-1