Convert Sorted Array to Binary Search Tree – LeetCode Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.
Given an integer array nums
where the elements are sorted in ascending order, convert it to a height-balanced binary search tree.
A height-balanced binary tree is a binary tree in which the depth of the two subtrees of every node never differs by more than one.
Example 1:
Input: nums = [-10,-3,0,5,9] Output: [0,-3,9,-10,null,5] Explanation: [0,-10,5,null,-3,null,9] is also accepted:![]()
Example 2:
Input: nums = [1,3] Output: [3,1] Explanation: [1,null,3] and [3,1] are both height-balanced BSTs.
Constraints:
1 <= nums.length <= 104
-104 <= nums[i] <= 104
nums
is sorted in a strictly increasing order.
C++ Convert Sorted Array to Binary Search Tree LeetCode Solution
class Solution {
public:
TreeNode *sortedArrayToBST(vector<int> &num) {
if(num.size() == 0) return NULL;
if(num.size() == 1)
{
return new TreeNode(num[0]);
}
int middle = num.size()/2;
TreeNode* root = new TreeNode(num[middle]);
vector<int> leftInts(num.begin(), num.begin()+middle);
vector<int> rightInts(num.begin()+middle+1, num.end());
root->left = sortedArrayToBST(leftInts);
root->right = sortedArrayToBST(rightInts);
return root;
}
};
Java Convert Sorted Array to Binary Search Tree LeetCode Solution
public TreeNode sortedArrayToBST(int[] num) {
if (num.length == 0) {
return null;
}
TreeNode head = helper(num, 0, num.length - 1);
return head;
}
public TreeNode helper(int[] num, int low, int high) {
if (low > high) { // Done
return null;
}
int mid = (low + high) / 2;
TreeNode node = new TreeNode(num[mid]);
node.left = helper(num, low, mid - 1);
node.right = helper(num, mid + 1, high);
return node;
}
Python 3 Convert Sorted Array to Binary Search Tree LeetCode Solution
class Solution:
# @param num, a list of integers
# @return a tree node
# 12:37
def sortedArrayToBST(self, num):
if not num:
return None
mid = len(num) // 2
root = TreeNode(num[mid])
root.left = self.sortedArrayToBST(num[:mid])
root.right = self.sortedArrayToBST(num[mid+1:])
return root
Array-1180
String-562
Hash Table-412
Dynamic Programming-390
Math-368
Sorting-264
Greedy-257
Depth-First Search-256
Database-215
Breadth-First Search-200
Tree-195
Binary Search-191
Matrix-176
Binary Tree-160
Two Pointers-151
Bit Manipulation-140
Stack-133
Heap (Priority Queue)-117
Design-116
Graph-108
Simulation-103
Prefix Sum-96
Backtracking-92
Counting-86
Sliding Window-73
Linked List-69
Union Find-66
Ordered Set-48
Monotonic Stack-47
Recursion-43
Trie-41
Binary Search Tree-40
Divide and Conquer-40
Enumeration-39
Bitmask-37
Queue-33
Memoization-32
Topological Sort-31
Geometry-30
Segment Tree-27
Game Theory-24
Hash Function-24
Binary Indexed Tree-21
Interactive-18
Data Stream-17
String Matching-17
Rolling Hash-17
Shortest Path-16
Number Theory-16
Combinatorics-15
Randomized-12
Monotonic Queue-9
Iterator-9
Merge Sort-9
Concurrency-9
Doubly-Linked List-8
Brainteaser-8
Probability and Statistics-7
Quickselect-7
Bucket Sort-6
Suffix Array-6
Minimum Spanning Tree-5
Counting Sort-5
Shell-4
Line Sweep-4
Reservoir Sampling-4
Eulerian Circuit-3
Radix Sort-3
Strongly Connected Componen-t2
Rejection Sampling-2
Biconnected Component-1
Leave a comment below