Distribute Candies – LeetCode Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.
Alice has n
candies, where the ith
candy is of type candyType[i]
. Alice noticed that she started to gain weight, so she visited a doctor.
The doctor advised Alice to only eat n / 2
of the candies she has (n
is always even). Alice likes her candies very much, and she wants to eat the maximum number of different types of candies while still following the doctor’s advice.
Given the integer array candyType
of length n
, return the maximum number of different types of candies she can eat if she only eats n / 2
of them.
Example 1:
Input: candyType = [1,1,2,2,3,3] Output: 3 Explanation: Alice can only eat 6 / 2 = 3 candies. Since there are only 3 types, she can eat one of each type.
Example 2:
Input: candyType = [1,1,2,3] Output: 2 Explanation: Alice can only eat 4 / 2 = 2 candies. Whether she eats types [1,2], [1,3], or [2,3], she still can only eat 2 different types.
Example 3:
Input: candyType = [6,6,6,6] Output: 1 Explanation: Alice can only eat 4 / 2 = 2 candies. Even though she can eat 2 candies, she only has 1 type.
Constraints:
n == candyType.length
2 <= n <= 104
n
is even.-105 <= candyType[i] <= 105
C++ Distribute Candies LeetCode Solution
int distributeCandies(vector<int>& c) {
return min(unordered_set<int>(begin(c), end(c)).size(), c.size() / 2);
}
Java Distribute Candies LeetCode Solution
public class Solution {
public int distributeCandies(int[] candies) {
Set<Integer> kinds = new HashSet<>();
for (int candy : candies) kinds.add(candy);
return kinds.size() >= candies.length / 2 ? candies.length / 2 : kinds.size();
}
}
Python 3 Distribute Candies LeetCode Solution
def distributeCandies(self, candies):
return min(len(candies) / 2, len(set(candies)))
Array-1180
String-562
Hash Table-412
Dynamic Programming-390
Math-368
Sorting-264
Greedy-257
Depth-First Search-256
Database-215
Breadth-First Search-200
Tree-195
Binary Search-191
Matrix-176
Binary Tree-160
Two Pointers-151
Bit Manipulation-140
Stack-133
Heap (Priority Queue)-117
Design-116
Graph-108
Simulation-103
Prefix Sum-96
Backtracking-92
Counting-86
Sliding Window-73
Linked List-69
Union Find-66
Ordered Set-48
Monotonic Stack-47
Recursion-43
Trie-41
Binary Search Tree-40
Divide and Conquer-40
Enumeration-39
Bitmask-37
Queue-33
Memoization-32
Topological Sort-31
Geometry-30
Segment Tree-27
Game Theory-24
Hash Function-24
Binary Indexed Tree-21
Interactive-18
Data Stream-17
String Matching-17
Rolling Hash-17
Shortest Path-16
Number Theory-16
Combinatorics-15
Randomized-12
Monotonic Queue-9
Iterator-9
Merge Sort-9
Concurrency-9
Doubly-Linked List-8
Brainteaser-8
Probability and Statistics-7
Quickselect-7
Bucket Sort-6
Suffix Array-6
Minimum Spanning Tree-5
Counting Sort-5
Shell-4
Line Sweep-4
Reservoir Sampling-4
Eulerian Circuit-3
Radix Sort-3
Strongly Connected Componen-t2
Rejection Sampling-2
Biconnected Component-1