Find Peak Element – LeetCode Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.
A peak element is an element that is strictly greater than its neighbors.
Given a 0-indexed integer array nums
, find a peak element, and return its index. If the array contains multiple peaks, return the index to any of the peaks.
You may imagine that nums[-1] = nums[n] = -∞
. In other words, an element is always considered to be strictly greater than a neighbor that is outside the array.
You must write an algorithm that runs in O(log n)
time.
Example 1:
Input: nums = [1,2,3,1] Output: 2 Explanation: 3 is a peak element and your function should return the index number 2.
Example 2:
Input: nums = [1,2,1,3,5,6,4] Output: 5 Explanation: Your function can return either index number 1 where the peak element is 2, or index number 5 where the peak element is 6.
Constraints:
1 <= nums.length <= 1000
-231 <= nums[i] <= 231 - 1
nums[i] != nums[i + 1]
for all validi
.
C++ Find Peak Element LeetCode Solution
class Solution {
public:
int findPeakElement(vector<int>& nums) {
int lo = 0, hi = nums.size()-1, mid;
while (lo < hi) {
mid = lo + (hi - lo) / 2;
if (nums[mid] < nums[mid + 1])
lo = mid + 1;
else hi = mid;
}
return lo;
}
};
Java Find Peak Element LeetCode Solution
public int findPeakElement(int[] nums) {
int N = nums.length;
if (N == 1) {
return 0;
}
int left = 0, right = N - 1;
while (right - left > 1) {
int mid = left + (right - left) / 2;
if (nums[mid] < nums[mid + 1]) {
left = mid + 1;
} else {
right = mid;
}
}
return (left == N - 1 || nums[left] > nums[left + 1]) ? left : right;
}
Python 3 Find Peak Element LeetCode Solution
class Solution:
def findPeakElement(self, nums):
beg, end = 0, len(nums) - 1
while beg < end:
mid = (beg + end)//2
if nums[mid] < nums[mid + 1]:
beg = mid + 1
else:
end = mid
return end
Array-1180
String-562
Hash Table-412
Dynamic Programming-390
Math-368
Sorting-264
Greedy-257
Depth-First Search-256
Database-215
Breadth-First Search-200
Tree-195
Binary Search-191
Matrix-176
Binary Tree-160
Two Pointers-151
Bit Manipulation-140
Stack-133
Heap (Priority Queue)-117
Design-116
Graph-108
Simulation-103
Prefix Sum-96
Backtracking-92
Counting-86
Sliding Window-73
Linked List-69
Union Find-66
Ordered Set-48
Monotonic Stack-47
Recursion-43
Trie-41
Binary Search Tree-40
Divide and Conquer-40
Enumeration-39
Bitmask-37
Queue-33
Memoization-32
Topological Sort-31
Geometry-30
Segment Tree-27
Game Theory-24
Hash Function-24
Binary Indexed Tree-21
Interactive-18
Data Stream-17
String Matching-17
Rolling Hash-17
Shortest Path-16
Number Theory-16
Combinatorics-15
Randomized-12
Monotonic Queue-9
Iterator-9
Merge Sort-9
Concurrency-9
Doubly-Linked List-8
Brainteaser-8
Probability and Statistics-7
Quickselect-7
Bucket Sort-6
Suffix Array-6
Minimum Spanning Tree-5
Counting Sort-5
Shell-4
Line Sweep-4
Reservoir Sampling-4
Eulerian Circuit-3
Radix Sort-3
Strongly Connected Componen-t2
Rejection Sampling-2
Biconnected Component-1
Leave a comment below