Find Right Interval – LeetCode Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.
You are given an array of intervals
, where intervals[i] = [starti, endi]
and each starti
is unique.
The right interval for an interval i
is an interval j
such that startj >= endi
and startj
is minimized. Note that i
may equal j
.
Return an array of right interval indices for each interval i
. If no right interval exists for interval i
, then put -1
at index i
.
Example 1:
Input: intervals = [[1,2]] Output: [-1] Explanation: There is only one interval in the collection, so it outputs -1.
Example 2:
Input: intervals = [[3,4],[2,3],[1,2]] Output: [-1,0,1] Explanation: There is no right interval for [3,4]. The right interval for [2,3] is [3,4] since start0 = 3 is the smallest start that is >= end1 = 3. The right interval for [1,2] is [2,3] since start1 = 2 is the smallest start that is >= end2 = 2.
Example 3:
Input: intervals = [[1,4],[2,3],[3,4]] Output: [-1,2,-1] Explanation: There is no right interval for [1,4] and [3,4]. The right interval for [2,3] is [3,4] since start2 = 3 is the smallest start that is >= end1 = 3.
Constraints:
1 <= intervals.length <= 2 * 104
intervals[i].length == 2
-106 <= starti <= endi <= 106
- The start point of each interval is unique.
C++ Find Right Interval LeetCode Solution
class Solution {
public:
vector<int> findRightInterval(vector<vector<int>>& intervals) {
vector<int> ans(intervals.size());
map<int, int> m;
for(int i = 0; i < intervals.size(); i++)
m[intervals[i][0]] = i;
for(int i = 0; i < intervals.size(); i++)
ans[i] = m.lower_bound(intervals[i][1])!=end(m)?m.lower_bound(intervals[i][1]) -> second:-1;
return ans;
}
};
Java Find Right Interval LeetCode Solution
public class Solution {
public int[] findRightInterval(Interval[] intervals) {
int[] result = new int[intervals.length];
java.util.NavigableMap<Integer, Integer> intervalMap = new TreeMap<>();
for (int i = 0; i < intervals.length; ++i) {
intervalMap.put(intervals[i].start, i);
}
for (int i = 0; i < intervals.length; ++i) {
Map.Entry<Integer, Integer> entry = intervalMap.ceilingEntry(intervals[i].end);
result[i] = (entry != null) ? entry.getValue() : -1;
}
return result;
}
}
Python 3 Find Right Interval LeetCode Solution
def findRightInterval(self, intervals):
l = sorted((e.start, i) for i, e in enumerate(intervals))
res = []
for e in intervals:
r = bisect.bisect_left(l, (e.end,))
res.append(l[r][1] if r < len(l) else -1)
return res
Array-1180
String-562
Hash Table-412
Dynamic Programming-390
Math-368
Sorting-264
Greedy-257
Depth-First Search-256
Database-215
Breadth-First Search-200
Tree-195
Binary Search-191
Matrix-176
Binary Tree-160
Two Pointers-151
Bit Manipulation-140
Stack-133
Heap (Priority Queue)-117
Design-116
Graph-108
Simulation-103
Prefix Sum-96
Backtracking-92
Counting-86
Sliding Window-73
Linked List-69
Union Find-66
Ordered Set-48
Monotonic Stack-47
Recursion-43
Trie-41
Binary Search Tree-40
Divide and Conquer-40
Enumeration-39
Bitmask-37
Queue-33
Memoization-32
Topological Sort-31
Geometry-30
Segment Tree-27
Game Theory-24
Hash Function-24
Binary Indexed Tree-21
Interactive-18
Data Stream-17
String Matching-17
Rolling Hash-17
Shortest Path-16
Number Theory-16
Combinatorics-15
Randomized-12
Monotonic Queue-9
Iterator-9
Merge Sort-9
Concurrency-9
Doubly-Linked List-8
Brainteaser-8
Probability and Statistics-7
Quickselect-7
Bucket Sort-6
Suffix Array-6
Minimum Spanning Tree-5
Counting Sort-5
Shell-4
Line Sweep-4
Reservoir Sampling-4
Eulerian Circuit-3
Radix Sort-3
Strongly Connected Componen-t2
Rejection Sampling-2
Biconnected Component-1