Iterate It – HackerRank Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.
Solutions of Algorithms Data Structures Hard HackerRank:
Here are all the Solutions of Hard , Advanced , Expert Algorithms of Data Structure of Hacker Rank , Leave a comment for similar posts
C++ replace HackerRank Solution
#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <vector>
#include <string>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <sstream>
#include <cmath>
#include <ctime>
#include <bitset>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int, int> pii;
typedef vector<int> vi;
typedef vector<string> vs;
typedef vector< vector<int> > vvi;
typedef vector<ll> vl;
typedef vector< vector<ll> > vvl;
#define forn(i, n) for (int i = 0; i < (int)(n); i++)
#define forv(i, v) forn(i, v.size())
#define all(v) v.begin(), v.end()
#define mp make_pair
#define pb push_back
const int N = 50005;
typedef bitset<N> mask;
int gcd(int x, int y) {
if (!y) return x;
return gcd(y, x % y);
}
int main() {
#ifdef NEREVAR_PROJECT
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
int n; cin >> n;
vi a(n);
forn(i, n) {
scanf("%d", &a[i]);
}
sort(all(a));
a.erase(unique(all(a)), a.end());
n = (int)a.size();
mask diffs;
mask present;
for (int i = n - 1; i >= 0; i--) {
diffs |= present >> a[i];
present.set(a[i]);
}
vi s;
forn(i, N) {
if (diffs.test(i)) {
s.pb(i);
}
}
if (s.empty()) {
cout << 1 << endl;
return 0;
}
int g = 0;
forv(i, s) g = gcd(g, s[i]);
forv(i, s) s[i] /= g;
diffs.reset();
present.reset();
for (int i = (int)s.size() - 1; i >= 0; i--) {
diffs |= present >> (s[i] + 1);
present.set(s[i]);
}
int steps = 2, m = s.back() - s[0];
while (m && !diffs.test(0)) {
mask next;
int mNext = m;
forn(i, m) {
if (diffs.test(i)) {
if (mNext == m) {
mNext = m - i - 1;
}
next |= diffs >> (i + 1);
}
}
m = mNext;
steps++;
diffs = next;
}
cout << steps + m << endl;
return 0;
}
Java rep HackerRank Solution
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
public class G {
InputStream is;
PrintWriter out;
String INPUT = "";
void solve()
{
int n = ni();
int Z = 50003;
long[] a = new long[Z];
long[] ra = new long[Z];
for(int v : na(n)){
a[v] |= 1;
}
int step = 0;
if(size(a) <= 5){
int[] who = new int[5];
int p = 0;
for(int i = 0;i < Z;i++){
if(a[i] == 1){
who[p++] = i;
a[i] = 0;
}
}
who = Arrays.copyOf(who, p);
while(p <= 5){
int[] nwho = new int[p*(p-1)/2];
int q = 0;
for(int i = 0;i < p;i++){
for(int j = i+1;j < p;j++){
nwho[q++] = who[j]-who[i];
}
}
Arrays.sort(nwho, 0, q);
who = uniq(nwho, q);
p = who.length;
step++;
if(p == 0)break;
}
if(p == 0){
out.println(step);
return;
}
for(int w : who){
a[w] = 1;
}
}
while(true){
n = a.length;
// trnz(a);
int g = 0;
for(int i = 1;i < Z;i++){
if(a[i] == 1){
g = gcd(g, i);
if(g == 1)break;
}
}
if(g > 1){
for(int i = 1;i < Z;i++){
if(a[i] == 1){
a[i/g] = 1;
a[i] = 0;
}
}
}
for(int i = 0;i < Z;i++){
ra[Z-1-i] = a[i];
}
long[] aa = convoluteSimply(a, ra, 998244353, 5);
boolean end = true;
int max = 0, tot = 0;
for(int i = 1;i < Z;i++){
a[i] = aa[Z-1+i] > 0 ? 1 : 0;
if(a[i] == 1){
max = i;
tot++;
end = false;
}
}
step++;
if(max == tot){
step += max;
break;
}
if(end)break;
}
out.println(step);
}
public static int gcd(int a, int b) {
while (b > 0) {
int c = a;
a = b;
b = c % b;
}
return a;
}
public static int size(long... o)
{
int ret = 0;
for(long v : o){
ret += v;
}
return ret;
}
public static void trnz(long... o)
{
for(int i = 0;i < o.length;i++)if(o[i] != 0)System.out.print(i+":"+o[i]+" ");
System.out.println();
}
public static int[] uniq(int[] a, int n)
{
int p = 0;
for(int i = 0;i < n;i++) {
if(i == 0 || a[i] != a[i-1])a[p++] = a[i];
}
return Arrays.copyOf(a, p);
}
public static final int[] NTTPrimes = {1053818881, 1051721729, 1045430273, 1012924417, 1007681537, 1004535809, 998244353, 985661441, 976224257, 975175681};
public static final int[] NTTPrimitiveRoots = {7, 6, 3, 5, 3, 3, 3, 3, 3, 17};
// public static final int[] NTTPrimes = {1012924417, 1004535809, 998244353, 985661441, 975175681, 962592769, 950009857, 943718401, 935329793, 924844033};
// public static final int[] NTTPrimitiveRoots = {5, 3, 3, 3, 17, 7, 7, 7, 3, 5};
public static long[] convoluteSimply(long[] a, long[] b, int P, int g)
{
int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
long[] fa = nttmb(a, m, false, P, g);
long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
for(int i = 0;i < m;i++){
fa[i] = fa[i]*fb[i]%P;
}
return nttmb(fa, m, true, P, g);
}
public static long[] convolute(long[] a, long[] b)
{
int USE = 2;
int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
long[][] fs = new long[USE][];
for(int k = 0;k < USE;k++){
int P = NTTPrimes[k], g = NTTPrimitiveRoots[k];
long[] fa = nttmb(a, m, false, P, g);
long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
for(int i = 0;i < m;i++){
fa[i] = fa[i]*fb[i]%P;
}
fs[k] = nttmb(fa, m, true, P, g);
}
int[] mods = Arrays.copyOf(NTTPrimes, USE);
long[] gammas = garnerPrepare(mods);
int[] buf = new int[USE];
for(int i = 0;i < fs[0].length;i++){
for(int j = 0;j < USE;j++)buf[j] = (int)fs[j][i];
long[] res = garnerBatch(buf, mods, gammas);
long ret = 0;
for(int j = res.length-1;j >= 0;j--)ret = ret * mods[j] + res[j];
fs[0][i] = ret;
}
return fs[0];
}
public static long[] convolute(long[] a, long[] b, int USE, int mod)
{
int m = Math.max(2, Integer.highestOneBit(Math.max(a.length, b.length)-1)<<2);
long[][] fs = new long[USE][];
for(int k = 0;k < USE;k++){
int P = NTTPrimes[k], g = NTTPrimitiveRoots[k];
long[] fa = nttmb(a, m, false, P, g);
long[] fb = a == b ? fa : nttmb(b, m, false, P, g);
for(int i = 0;i < m;i++){
fa[i] = fa[i]*fb[i]%P;
}
fs[k] = nttmb(fa, m, true, P, g);
}
int[] mods = Arrays.copyOf(NTTPrimes, USE);
long[] gammas = garnerPrepare(mods);
int[] buf = new int[USE];
for(int i = 0;i < fs[0].length;i++){
for(int j = 0;j < USE;j++)buf[j] = (int)fs[j][i];
long[] res = garnerBatch(buf, mods, gammas);
long ret = 0;
for(int j = res.length-1;j >= 0;j--)ret = (ret * mods[j] + res[j]) % mod;
fs[0][i] = ret;
}
return fs[0];
}
// static int[] wws = new int[270000]; // outer faster
// Modifed Montgomery + Barrett
private static long[] nttmb(long[] src, int n, boolean inverse, int P, int g)
{
long[] dst = Arrays.copyOf(src, n);
int h = Integer.numberOfTrailingZeros(n);
long K = Integer.highestOneBit(P)<<1;
int H = Long.numberOfTrailingZeros(K)*2;
long M = K*K/P;
int[] wws = new int[1<<h-1];
long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P);
long w = (1L<<32)%P;
for(int k = 0;k < 1<<h-1;k++){
wws[k] = (int)w;
w = modh(w*dw, M, H, P);
}
long J = invl(P, 1L<<32);
for(int i = 0;i < h;i++){
for(int j = 0;j < 1<<i;j++){
for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){
long u = (dst[s] - dst[t] + 2*P)*wws[k];
dst[s] += dst[t];
if(dst[s] >= 2*P)dst[s] -= 2*P;
// long Q = (u&(1L<<32)-1)*J&(1L<<32)-1;
long Q = (u<<32)*J>>>32;
dst[t] = (u>>>32)-(Q*P>>>32)+P;
}
}
if(i < h-1){
for(int k = 0;k < 1<<h-i-2;k++)wws[k] = wws[k*2];
}
}
for(int i = 0;i < n;i++){
if(dst[i] >= P)dst[i] -= P;
}
for(int i = 0;i < n;i++){
int rev = Integer.reverse(i)>>>-h;
if(i < rev){
long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d;
}
}
if(inverse){
long in = invl(n, P);
for(int i = 0;i < n;i++)dst[i] = modh(dst[i]*in, M, H, P);
}
return dst;
}
// Modified Shoup + Barrett
private static long[] nttsb(long[] src, int n, boolean inverse, int P, int g)
{
long[] dst = Arrays.copyOf(src, n);
int h = Integer.numberOfTrailingZeros(n);
long K = Integer.highestOneBit(P)<<1;
int H = Long.numberOfTrailingZeros(K)*2;
long M = K*K/P;
long dw = inverse ? pow(g, P-1-(P-1)/n, P) : pow(g, (P-1)/n, P);
long[] wws = new long[1<<h-1];
long[] ws = new long[1<<h-1];
long w = 1;
for(int k = 0;k < 1<<h-1;k++){
wws[k] = (w<<32)/P;
ws[k] = w;
w = modh(w*dw, M, H, P);
}
for(int i = 0;i < h;i++){
for(int j = 0;j < 1<<i;j++){
for(int k = 0, s = j<<h-i, t = s|1<<h-i-1;k < 1<<h-i-1;k++,s++,t++){
long ndsts = dst[s] + dst[t];
if(ndsts >= 2*P)ndsts -= 2*P;
long T = dst[s] - dst[t] + 2*P;
long Q = wws[k]*T>>>32;
dst[s] = ndsts;
dst[t] = ws[k]*T-Q*P&(1L<<32)-1;
}
}
// dw = dw * dw % P;
if(i < h-1){
for(int k = 0;k < 1<<h-i-2;k++){
wws[k] = wws[k*2];
ws[k] = ws[k*2];
}
}
}
for(int i = 0;i < n;i++){
if(dst[i] >= P)dst[i] -= P;
}
for(int i = 0;i < n;i++){
int rev = Integer.reverse(i)>>>-h;
if(i < rev){
long d = dst[i]; dst[i] = dst[rev]; dst[rev] = d;
}
}
if(inverse){
long in = invl(n, P);
for(int i = 0;i < n;i++){
dst[i] = modh(dst[i] * in, M, H, P);
}
}
return dst;
}
static final long mask = (1L<<31)-1;
public static long modh(long a, long M, int h, int mod)
{
long r = a-((M*(a&mask)>>>31)+M*(a>>>31)>>>h-31)*mod;
return r < mod ? r : r-mod;
}
private static long[] garnerPrepare(int[] m)
{
int n = m.length;
assert n == m.length;
if(n == 0)return new long[0];
long[] gamma = new long[n];
for(int k = 1;k < n;k++){
long prod = 1;
for(int i = 0;i < k;i++){
prod = prod * m[i] % m[k];
}
gamma[k] = invl(prod, m[k]);
}
return gamma;
}
private static long[] garnerBatch(int[] u, int[] m, long[] gamma)
{
int n = u.length;
assert n == m.length;
long[] v = new long[n];
v[0] = u[0];
for(int k = 1;k < n;k++){
long temp = v[k-1];
for(int j = k-2;j >= 0;j--){
temp = (temp * m[j] + v[j]) % m[k];
}
v[k] = (u[k] - temp) * gamma[k] % m[k];
if(v[k] < 0)v[k] += m[k];
}
return v;
}
private static long pow(long a, long n, long mod) {
// a %= mod;
long ret = 1;
int x = 63 - Long.numberOfLeadingZeros(n);
for (; x >= 0; x--) {
ret = ret * ret % mod;
if (n << 63 - x < 0)
ret = ret * a % mod;
}
return ret;
}
private static long invl(long a, long mod) {
long b = mod;
long p = 1, q = 0;
while (b > 0) {
long c = a / b;
long d;
d = a;
a = b;
b = d % b;
d = p;
p = q;
q = d - c * q;
}
return p < 0 ? p + mod : p;
}
void run() throws Exception
{
// int n = 100000, m = 99999;
// Random gen = new Random();
// StringBuilder sb = new StringBuilder();
// sb.append(n + " ");
// for (int i = 0; i < n; i++) {
// sb.append(gen.nextInt(16667)*3+1 + " ");
// }
// INPUT = sb.toString();
is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes());
out = new PrintWriter(System.out);
long s = System.currentTimeMillis();
solve();
out.flush();
if(!INPUT.isEmpty())tr(System.currentTimeMillis()-s+"ms");
}
public static void main(String[] args) throws Exception { new G().run(); }
private byte[] inbuf = new byte[1024];
public int lenbuf = 0, ptrbuf = 0;
private int readByte()
{
if(lenbuf == -1)throw new InputMismatchException();
if(ptrbuf >= lenbuf){
ptrbuf = 0;
try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); }
if(lenbuf <= 0)return -1;
}
return inbuf[ptrbuf++];
}
private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); }
private int skip() { int b; while((b = readByte()) != -1 && isSpaceChar(b)); return b; }
private double nd() { return Double.parseDouble(ns()); }
private char nc() { return (char)skip(); }
private String ns()
{
int b = skip();
StringBuilder sb = new StringBuilder();
while(!(isSpaceChar(b))){ // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
private char[] ns(int n)
{
char[] buf = new char[n];
int b = skip(), p = 0;
while(p < n && !(isSpaceChar(b))){
buf[p++] = (char)b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
private char[][] nm(int n, int m)
{
char[][] map = new char[n][];
for(int i = 0;i < n;i++)map[i] = ns(m);
return map;
}
private int[] na(int n)
{
int[] a = new int[n];
for(int i = 0;i < n;i++)a[i] = ni();
return a;
}
private int ni()
{
int num = 0, b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private long nl()
{
long num = 0;
int b;
boolean minus = false;
while((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-'));
if(b == '-'){
minus = true;
b = readByte();
}
while(true){
if(b >= '0' && b <= '9'){
num = num * 10 + (b - '0');
}else{
return minus ? -num : num;
}
b = readByte();
}
}
private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); }
}
Python 3 rep HackerRank Solution
input()
A = set([int(m) for m in input().strip().split()])
def DeltaBasis2(AList,P=False):
if type(AList) == set:
AList = sorted(list(AList))
if len(AList) == 1:
return 1
Count = 0
while len(AList)>0:
if len(AList) == 1:
return Count + 1
LCM = True
for i1 in AList[1:]:
if i1 % AList[0] != 0:
LCM = False
break
if LCM:
AList = [int(m/AList[0]) for m in AList]
if (AList[0] == 1 and AList[1] == 2):
return Count + AList[-1]
Delta = set()
if len(AList) < 100:
MaxWidth = len(AList) - 1
else:
MaxWidth = int(len(AList)**0.75//1)
for W in range(1,MaxWidth+1):
for i1 in range(len(AList)-W):
Delta.add(abs(AList[i1+W]-AList[i1]))
Delta = sorted(list(Delta))
AList = sorted(list(set([m for m in Delta] + [AList[-1] - m for m in AList[:-1]])))
if P:
print(AList2)
Count += 1
return Count
print(DeltaBasis2(A))
Python 2 rep HackerRank Solution
C rep HackerRank Solution
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
typedef unsigned int uint;
#define MAX_N 100000
#define MAX_VALUE 50000
uint a[MAX_N];
bool b[MAX_VALUE+1];
int main() {
// read input
uint n;
scanf("%u", &n);
assert(n <= MAX_N);
for (int i = 0; i < n; i++) {
uint v;
scanf("%u", &v);
assert(v);
assert(v <= MAX_VALUE);
b[v] = true;
}
// start grinding
uint rep = 0;
while (true) {
// transfer from b (presence array) back to a (sorted list)
uint stride = 0;
bool in_stride = true;
n = 0;
for (uint i = 1; i <= MAX_VALUE; i++) {
if (b[i]) {
b[i] = false;
if (!n) {
stride = i;
} else if (in_stride && i - a[n-1] != stride) {
in_stride = false;
}
a[n++] = i;
}
}
if (!n) {
break;
}
if (in_stride) {
// shortcut
assert(a[n-1]/stride == n);
rep += n;
break;
}
rep++;
for (uint ai = 0; ai < n-1; ai++) {
for (uint aj = ai+1; aj < n; aj++) {
// no unnecessary code here, performance-critical
b[a[aj] - a[ai]] = true;
}
}
}
printf("%u\n", rep);
return 0;
}
Warmup
Implementation
Strings
Sorting
Search
Graph Theory
Greedy
Dynamic Programming
Constructive Algorithms
Bit Manipulation
Recursion
Game Theory
NP Complete
Debugging
Leave a comment below