Jump Game II – LeetCode Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.
Given an array of non-negative integers nums
, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Your goal is to reach the last index in the minimum number of jumps.
You can assume that you can always reach the last index.
Example 1:
Input: nums = [2,3,1,1,4] Output: 2 Explanation: The minimum number of jumps to reach the last index is 2. Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: nums = [2,3,0,1,4] Output: 2
Constraints:
1 <= nums.length <= 104
0 <= nums[i] <= 1000
C++ Jump Game II LeetCode Solution
class Solution {
public:
int jump(vector<int>& nums) {
int n = nums.size(), step = 0, start = 0, end = 0;
while (end < n - 1) {
step++;
int maxend = end + 1;
for (int i = start; i <= end; i++) {
if (i + nums[i] >= n - 1) return step;
maxend = max(maxend, i + nums[i]);
}
start = end + 1;
end = maxend;
}
return step;
}
};
Java Jump Game II LeetCode Solution
public int jump(int[] A) {
int jumps = 0, curEnd = 0, curFarthest = 0;
for (int i = 0; i < A.length - 1; i++) {
curFarthest = Math.max(curFarthest, i + A[i]);
if (i == curEnd) {
jumps++;
curEnd = curFarthest;
}
}
return jumps;
}
Python 3 Jump Game II LeetCode Solution
def jump(self, nums):
if len(nums) <= 1: return 0
l, r = 0, nums[0]
times = 1
while r < len(nums) - 1:
times += 1
nxt = max(i + nums[i] for i in range(l, r + 1))
l, r = r, nxt
return times
Array-1180
String-562
Hash Table-412
Dynamic Programming-390
Math-368
Sorting-264
Greedy-257
Depth-First Search-256
Database-215
Breadth-First Search-200
Tree-195
Binary Search-191
Matrix-176
Binary Tree-160
Two Pointers-151
Bit Manipulation-140
Stack-133
Heap (Priority Queue)-117
Design-116
Graph-108
Simulation-103
Prefix Sum-96
Backtracking-92
Counting-86
Sliding Window-73
Linked List-69
Union Find-66
Ordered Set-48
Monotonic Stack-47
Recursion-43
Trie-41
Binary Search Tree-40
Divide and Conquer-40
Enumeration-39
Bitmask-37
Queue-33
Memoization-32
Topological Sort-31
Geometry-30
Segment Tree-27
Game Theory-24
Hash Function-24
Binary Indexed Tree-21
Interactive-18
Data Stream-17
String Matching-17
Rolling Hash-17
Shortest Path-16
Number Theory-16
Combinatorics-15
Randomized-12
Monotonic Queue-9
Iterator-9
Merge Sort-9
Concurrency-9
Doubly-Linked List-8
Brainteaser-8
Probability and Statistics-7
Quickselect-7
Bucket Sort-6
Suffix Array-6
Minimum Spanning Tree-5
Counting Sort-5
Shell-4
Line Sweep-4
Reservoir Sampling-4
Eulerian Circuit-3
Radix Sort-3
Strongly Connected Componen-t2
Rejection Sampling-2
Biconnected Component-1
Leave a comment below