Number of Islands – LeetCode Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.
Given an m x n
2D binary grid grid
which represents a map of '1'
s (land) and '0'
s (water), return the number of islands.
An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.
Example 1:
Input: grid = [ ["1","1","1","1","0"], ["1","1","0","1","0"], ["1","1","0","0","0"], ["0","0","0","0","0"] ] Output: 1
Example 2:
Input: grid = [ ["1","1","0","0","0"], ["1","1","0","0","0"], ["0","0","1","0","0"], ["0","0","0","1","1"] ] Output: 3
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j]
is'0'
or'1'
.
C++ Number of Islands LeetCode Solution
class Solution {
public:
int numIslands(vector<vector<char>>& grid) {
int m = grid.size(), n = m ? grid[0].size() : 0, islands = 0, offsets[] = {0, 1, 0, -1, 0};
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == '1') {
islands++;
grid[i][j] = '0';
queue<pair<int, int>> todo;
todo.push({i, j});
while (!todo.empty()) {
pair<int, int> p = todo.front();
todo.pop();
for (int k = 0; k < 4; k++) {
int r = p.first + offsets[k], c = p.second + offsets[k + 1];
if (r >= 0 && r < m && c >= 0 && c < n && grid[r][c] == '1') {
grid[r][c] = '0';
todo.push({r, c});
}
}
}
}
}
}
return islands;
}
};
Java Number of Islands LeetCode Solution
public class Solution {
char[][] g;
public int numIslands(char[][] grid) {
int islands = 0;
g = grid;
for (int i=0; i<g.length; i++)
for (int j=0; j<g[i].length; j++)
islands += sink(i, j);
return islands;
}
int sink(int i, int j) {
if (i < 0 || i == g.length || j < 0 || j == g[i].length || g[i][j] == '0')
return 0;
g[i][j] = '0';
sink(i+1, j); sink(i-1, j); sink(i, j+1); sink(i, j-1);
return 1;
}
}
Python 3 Number of Islands LeetCode Solution
def numIslands(self, grid):
def sink(i, j):
if 0 <= i < len(grid) and 0 <= j < len(grid[i]) and grid[i][j] == '1':
grid[i][j] = '0'
map(sink, (i+1, i-1, i, i), (j, j, j+1, j-1))
return 1
return 0
return sum(sink(i, j) for i in range(len(grid)) for j in range(len(grid[i])))
Array-1180
String-562
Hash Table-412
Dynamic Programming-390
Math-368
Sorting-264
Greedy-257
Depth-First Search-256
Database-215
Breadth-First Search-200
Tree-195
Binary Search-191
Matrix-176
Binary Tree-160
Two Pointers-151
Bit Manipulation-140
Stack-133
Heap (Priority Queue)-117
Design-116
Graph-108
Simulation-103
Prefix Sum-96
Backtracking-92
Counting-86
Sliding Window-73
Linked List-69
Union Find-66
Ordered Set-48
Monotonic Stack-47
Recursion-43
Trie-41
Binary Search Tree-40
Divide and Conquer-40
Enumeration-39
Bitmask-37
Queue-33
Memoization-32
Topological Sort-31
Geometry-30
Segment Tree-27
Game Theory-24
Hash Function-24
Binary Indexed Tree-21
Interactive-18
Data Stream-17
String Matching-17
Rolling Hash-17
Shortest Path-16
Number Theory-16
Combinatorics-15
Randomized-12
Monotonic Queue-9
Iterator-9
Merge Sort-9
Concurrency-9
Doubly-Linked List-8
Brainteaser-8
Probability and Statistics-7
Quickselect-7
Bucket Sort-6
Suffix Array-6
Minimum Spanning Tree-5
Counting Sort-5
Shell-4
Line Sweep-4
Reservoir Sampling-4
Eulerian Circuit-3
Radix Sort-3
Strongly Connected Componen-t2
Rejection Sampling-2
Biconnected Component-1
Leave a comment below