Range Sum Query 2D – Immutable – LeetCode Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.
Given a 2D matrix matrix
, handle multiple queries of the following type:
- Calculate the sum of the elements of
matrix
inside the rectangle defined by its upper left corner(row1, col1)
and lower right corner(row2, col2)
.
Implement the NumMatrix
class:
NumMatrix(int[][] matrix)
Initializes the object with the integer matrixmatrix
.int sumRegion(int row1, int col1, int row2, int col2)
Returns the sum of the elements ofmatrix
inside the rectangle defined by its upper left corner(row1, col1)
and lower right corner(row2, col2)
.
You must design an algorithm where sumRegion
works on O(1)
time complexity.
Example 1:
Input ["NumMatrix", "sumRegion", "sumRegion", "sumRegion"] [[[[3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5]]], [2, 1, 4, 3], [1, 1, 2, 2], [1, 2, 2, 4]] Output [null, 8, 11, 12] Explanation NumMatrix numMatrix = new NumMatrix([[3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5]]); numMatrix.sumRegion(2, 1, 4, 3); // return 8 (i.e sum of the red rectangle) numMatrix.sumRegion(1, 1, 2, 2); // return 11 (i.e sum of the green rectangle) numMatrix.sumRegion(1, 2, 2, 4); // return 12 (i.e sum of the blue rectangle)
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
-104 <= matrix[i][j] <= 104
0 <= row1 <= row2 < m
0 <= col1 <= col2 < n
- At most
104
calls will be made tosumRegion
.
C++ Range Sum Query 2D – Immutable LeetCode Solution
class NumMatrix {
private:
int row, col;
vector<vector<int>> sums;
public:
NumMatrix(vector<vector<int>> &matrix) {
row = matrix.size();
col = row>0 ? matrix[0].size() : 0;
sums = vector<vector<int>>(row+1, vector<int>(col+1, 0));
for(int i=1; i<=row; i++) {
for(int j=1; j<=col; j++) {
sums[i][j] = matrix[i-1][j-1] +
sums[i-1][j] + sums[i][j-1] - sums[i-1][j-1] ;
}
}
}
int sumRegion(int row1, int col1, int row2, int col2) {
return sums[row2+1][col2+1] - sums[row2+1][col1] - sums[row1][col2+1] + sums[row1][col1];
}
};
Java Range Sum Query 2D – Immutable LeetCode Solution
private int[][] dp;
public NumMatrix(int[][] matrix) {
if( matrix == null
|| matrix.length == 0
|| matrix[0].length == 0 ){
return;
}
int m = matrix.length;
int n = matrix[0].length;
dp = new int[m + 1][n + 1];
for(int i = 1; i <= m; i++){
for(int j = 1; j <= n; j++){
dp[i][j] = dp[i - 1][j] + dp[i][j - 1] -dp[i - 1][j - 1] + matrix[i - 1][j - 1] ;
}
}
}
public int sumRegion(int row1, int col1, int row2, int col2) {
int iMin = Math.min(row1, row2);
int iMax = Math.max(row1, row2);
int jMin = Math.min(col1, col2);
int jMax = Math.max(col1, col2);
return dp[iMax + 1][jMax + 1] - dp[iMax + 1][jMin] - dp[iMin][jMax + 1] + dp[iMin][jMin];
}
Python 3 Range Sum Query 2D – Immutable LeetCode Solution
class NumMatrix(object):
def __init__(self, matrix):
if matrix is None or not matrix:
return
n, m = len(matrix), len(matrix[0])
self.sums = [ [0 for j in xrange(m+1)] for i in xrange(n+1) ]
for i in xrange(1, n+1):
for j in xrange(1, m+1):
self.sums[i][j] = matrix[i-1][j-1] + self.sums[i][j-1] + self.sums[i-1][j] - self.sums[i-1][j-1]
def sumRegion(self, row1, col1, row2, col2):
row1, col1, row2, col2 = row1+1, col1+1, row2+1, col2+1
return self.sums[row2][col2] - self.sums[row2][col1-1] - self.sums[row1-1][col2] + self.sums[row1-1][col1-1]
Array-1180
String-562
Hash Table-412
Dynamic Programming-390
Math-368
Sorting-264
Greedy-257
Depth-First Search-256
Database-215
Breadth-First Search-200
Tree-195
Binary Search-191
Matrix-176
Binary Tree-160
Two Pointers-151
Bit Manipulation-140
Stack-133
Heap (Priority Queue)-117
Design-116
Graph-108
Simulation-103
Prefix Sum-96
Backtracking-92
Counting-86
Sliding Window-73
Linked List-69
Union Find-66
Ordered Set-48
Monotonic Stack-47
Recursion-43
Trie-41
Binary Search Tree-40
Divide and Conquer-40
Enumeration-39
Bitmask-37
Queue-33
Memoization-32
Topological Sort-31
Geometry-30
Segment Tree-27
Game Theory-24
Hash Function-24
Binary Indexed Tree-21
Interactive-18
Data Stream-17
String Matching-17
Rolling Hash-17
Shortest Path-16
Number Theory-16
Combinatorics-15
Randomized-12
Monotonic Queue-9
Iterator-9
Merge Sort-9
Concurrency-9
Doubly-Linked List-8
Brainteaser-8
Probability and Statistics-7
Quickselect-7
Bucket Sort-6
Suffix Array-6
Minimum Spanning Tree-5
Counting Sort-5
Shell-4
Line Sweep-4
Reservoir Sampling-4
Eulerian Circuit-3
Radix Sort-3
Strongly Connected Componen-t2
Rejection Sampling-2
Biconnected Component-1
Leave a comment below