• Home
  • Top Posts
  • Code Solutions
  • How to
  • News
  • Trending
  • Anime
  • Health
  • Education
Wednesday, February 1, 2023
  • Login
Zeroplusfour
No Result
View All Result
  • Home
  • Top Posts
  • Code Solutions
  • How to
  • News
  • Trending
  • Anime
  • Health
  • Education
  • Home
  • Top Posts
  • Code Solutions
  • How to
  • News
  • Trending
  • Anime
  • Health
  • Education
No Result
View All Result
Zeroplusfour
No Result
View All Result
Home Code Solutions Hackerrank Algorithms

Sam’s Puzzle (Approximate) – HackerRank Solution

Sam's Puzzle (Approximate) - HackerRank Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.

admin by admin
August 24, 2022
Reading Time: 1 min read
0
15 Days to learn SQL Hard SQL(Advanced)-Solution

15 Days to learn SQL Hard SQL(Advanced)-Solution alt text

Spread the love

Table of Contents

  • Sam’s Puzzle (Approximate) – HackerRank Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.
  • Solutions of Algorithms Data Structures Hard HackerRank:
    • Here are all the Solutions of Hard , Advanced , Expert Algorithms of Data Structure of Hacker Rank , Leave a comment for similar posts
  • C++ replace HackerRank Solution
  • Java rep HackerRank Solution
  • Python 3 rep HackerRank Solution
  • Python 2 rep HackerRank Solution
  • C rep HackerRank Solution
    • Warmup Implementation Strings Sorting Search Graph Theory Greedy Dynamic Programming Constructive Algorithms Bit Manipulation Recursion Game Theory NP Complete Debugging
    • Leave a comment below
      • Related posts:

Sam’s Puzzle (Approximate) – HackerRank Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.

Solutions of Algorithms Data Structures Hard HackerRank:

Here are all the Solutions of Hard , Advanced , Expert Algorithms of Data Structure of Hacker Rank , Leave a comment for similar posts

C++ replace HackerRank Solution


Copy Code Copied Use a different Browser

#include <algorithm>
#include <bitset>
#include <cassert>
#include <climits>
#include <chrono>
#include <cmath>
#include <complex>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <deque>
#include <fstream>
#include <functional>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <utility>

using namespace std;

static default_random_engine dre;
static const unsigned max_moves = 500;

static unordered_map<unsigned, unsigned> n3_penalty;
static unordered_map<unsigned, pair<unsigned, unsigned>> n3_best_move;

class CField3
{
public:
    static const unsigned n = 3;
    vector<unsigned> vmap, vpos;

    CField3() { vmap.resize(n*n); vpos.resize(n*n); }

    void Set(unsigned pos, unsigned value)
    {
        vmap[pos] = value;
        vpos[value] = pos;
    }

    static unsigned PenaltyBase(const vector<unsigned>& vmap)
    {
        unsigned penalty = 0;
        for (unsigned i = 0; i < n; ++i)
        {
            for (unsigned j = 0; j < n; ++j)
            {
                unsigned x = vmap[i * n + j];
                for (unsigned i1 = i + 1; i1 < n; ++i1)
                {
                    if (vmap[i1 * n + j] < x) ++penalty;
                }
                for (unsigned j1 = j + 1; j1 < n; ++j1)
                {
                    if (vmap[i * n + j1] < x) ++penalty;
                }
            }
        }
        return penalty;
    }

    static unsigned Hash3FromPos(const vector<unsigned>& vpos)
    {
        assert(vpos.size() == 9);
        unsigned s = 0, m = 1;
        for (unsigned i = 0; i < 9; ++i)
        {
            s += m * vpos[i];
            m *= 9;
        }
        return s;
    }

    static unsigned Hash3FromMap(const vector<unsigned>& vmap)
    {
        static vector<unsigned> vs(9);
        assert(vmap.size() == 9);
        for (unsigned i = 0; i < 9; ++i)
        {
            vs[vmap[i]] = i;
        }
        return Hash3FromPos(vs);
    }

    unsigned Hash3() const { return Hash3FromPos(vpos); }

    void SetFromHash3(unsigned h)
    {
        assert(n == 3);
        for (unsigned i = 0; i < 9; ++i)
        {
            unsigned p = h % 9; h /= 9;
            vpos[i] = p;
            vmap[p] = i;
        }
    }

    static const vector<unsigned>& GetMove3FromIndex(unsigned index)
    {
        static const vector<vector<unsigned>> vt{ { 0u, 0u, 3u },{ 0u, 0u, 2u },{ 0u, 1u, 2u },{ 1u, 0u, 2u },{ 1u, 1u, 2u } };
        return vt[index];
    }

    void Rotate(unsigned i, unsigned j, unsigned k)
    {
        unsigned kh0 = k / 2, kh1 = (k + 1) / 2;
        for (unsigned i1 = 0; i1 < kh0; ++i1)
        {
            for (unsigned j1 = 0; j1 < kh1; ++j1)
            {
                unsigned x = vmap[(i1 + i) * n + (j1 + j)];
                Set((i1 + i) * n + (j1 + j), vmap[(k - j1 - 1 + i) * n + (i1 + j)]);
                Set((k - j1 - 1 + i) * n + (i1 + j), vmap[(k - i1 - 1 + i) * n + (k - j1 - 1 + j)]);
                Set((k - i1 - 1 + i) * n + (k - j1 - 1 + j), vmap[(j1 + i) * n + (k - i1 - 1 + j)]);
                Set((j1 + i) * n + (k - i1 - 1 + j), x);
            }
        }
    }

    void Rotate(const vector<unsigned>& v)
    {
        assert(v.size() == 3);
        Rotate(v[0], v[1], v[2]);
    }

    void RotateI(unsigned i, unsigned j, unsigned k)
    {
        unsigned kh0 = k / 2, kh1 = (k + 1) / 2;
        for (unsigned i1 = 0; i1 < kh0; ++i1)
        {
            for (unsigned j1 = 0; j1 < kh1; ++j1)
            {
                unsigned x = vmap[(i1 + i) * n + (j1 + j)];
                Set((i1 + i) * n + (j1 + j), vmap[(j1 + i) * n + (k - i1 - 1 + j)]);
                Set((j1 + i) * n + (k - i1 - 1 + j), vmap[(k - i1 - 1 + i) * n + (k - j1 - 1 + j)]);
                Set((k - i1 - 1 + i) * n + (k - j1 - 1 + j), vmap[(k - j1 - 1 + i) * n + (i1 + j)]);
                Set((k - j1 - 1 + i) * n + (i1 + j), x);
            }
        }
    }

    void RotateI(const vector<unsigned>& v)
    {
        assert(v.size() == 3);
        RotateI(v[0], v[1], v[2]);
    }

    static void BuildSolutionMap()
    {
        queue<unsigned> qh;
        vector<unsigned> vmap(9);
        for (unsigned i = 0; i < 9; ++i) vmap[i] = i;
        for (; ;)
        {
            unsigned h = Hash3FromMap(vmap);
            unsigned p = PenaltyBase(vmap);
            n3_penalty[h] = p;
            if (p == 0)
            {
                qh.push(h);
                n3_best_move[h] = make_pair(0u, 0u);
            }
            if (!next_permutation(vmap.begin(), vmap.end()))
                break;
        }

        CField3 f;
        unsigned maxl = 0;
        for (; !qh.empty(); )
        {
            unsigned h = qh.front(); qh.pop();
            unsigned l = n3_best_move[h].first >> 3;
            maxl = max(maxl, l);
            f.SetFromHash3(h);
            for (unsigned i = 0; i < 5; ++i)
            {
                f.RotateI(GetMove3FromIndex(i));
                unsigned fh = f.Hash3();
                if (n3_best_move.find(fh) == n3_best_move.end())
                {
                    qh.push(fh);
                    n3_best_move[fh] = make_pair(((l + 1) << 3) + i, h);
                }
                f.Rotate(GetMove3FromIndex(i));
            }
        }
        // cout << n3_best_move.size() << "\t" << maxl << endl;
    }
};

class CField
{
public:
    unsigned n;
    vector<unsigned> vmap;

    CField() : n(0) {}
    CField(unsigned _n) : n(_n) { vmap.resize(n*n); }

    void Set(unsigned pos, unsigned value) { vmap[pos] = value;    }

    void Read()
    {
        cin >> n;
        vmap.resize(n*n);
        for (unsigned i = 0; i < n * n; ++i)
        {
            int x;
            cin >> x;
            Set(i, x - 1);
        }
        AddCurrentPenalty();
    }

    static unsigned PenaltyBase(unsigned n, const vector<unsigned>& vmap)
    {
        unsigned penalty = 0;
        for (unsigned i = 0; i < n; ++i)
        {
            for (unsigned j = 0; j < n; ++j)
            {
                unsigned x = vmap[i * n + j];
                for (unsigned i1 = i + 1; i1 < n; ++i1)
                {
                    if (vmap[i1 * n + j] < x) ++penalty;
                }
                for (unsigned j1 = j + 1; j1 < n; ++j1)
                {
                    if (vmap[i * n + j1] < x) ++penalty;
                }
            }
        }
        return penalty;
    }

    unsigned PenaltyBase() const { return PenaltyBase(n, vmap); }

    void Rotate(unsigned i, unsigned j, unsigned k)
    {
        unsigned kh0 = k / 2, kh1 = (k + 1) / 2;
        for (unsigned i1 = 0; i1 < kh0; ++i1)
        {
            for (unsigned j1 = 0; j1 < kh1; ++j1)
            {
                unsigned x = vmap[(i1 + i) * n + (j1 + j)];
                Set((i1 + i) * n + (j1 + j), vmap[(k - j1 - 1 + i) * n + (i1 + j)]);
                Set((k - j1 - 1 + i) * n + (i1 + j), vmap[(k - i1 - 1 + i) * n + (k - j1 - 1 + j)]);
                Set((k - i1 - 1 + i) * n + (k - j1 - 1 + j), vmap[(j1 + i) * n + (k - i1 - 1 + j)]);
                Set((j1 + i) * n + (k - i1 - 1 + j), x);
            }
        }
    }

    void Rotate(const vector<unsigned>& v)
    {
        assert(v.size() == 3);
        Rotate(v[0], v[1], v[2]);
    }

    void RotateI(unsigned i, unsigned j, unsigned k)
    {
        unsigned kh0 = k / 2, kh1 = (k + 1) / 2;
        for (unsigned i1 = 0; i1 < kh0; ++i1)
        {
            for (unsigned j1 = 0; j1 < kh1; ++j1)
            {
                unsigned x = vmap[(i1 + i) * n + (j1 + j)];
                Set((i1 + i) * n + (j1 + j), vmap[(j1 + i) * n + (k - i1 - 1 + j)]);
                Set((j1 + i) * n + (k - i1 - 1 + j), vmap[(k - i1 - 1 + i) * n + (k - j1 - 1 + j)]);
                Set((k - i1 - 1 + i) * n + (k - j1 - 1 + j), vmap[(k - j1 - 1 + i) * n + (i1 + j)]);
                Set((k - j1 - 1 + i) * n + (i1 + j), x);
            }
        }
    }

    void RotateI(const vector<unsigned>& v)
    {
        assert(v.size() == 3);
        RotateI(v[0], v[1], v[2]);
    }

    static void CalcAccumSumS(unsigned n, const vector<unsigned>& vmap, vector<vector<unsigned>>& output)
    {
        assert(vmap.size() == n*n);
        if (output.size() != (n + 1))
        {
            output.resize(n + 1);
            for (unsigned i = 0; i < output.size(); ++i)
                output[i].resize(n + 1);
        }
        for (unsigned i = 0; i <= n; ++i)
        {
            output[i][0] = output[0][0] = 0;
        }
        for (unsigned i = 0; i < n; ++i)
        {
            for (unsigned j = 0; j < n; ++j)
            {
                output[i + 1][j + 1] = output[i + 1][j] + output[i][j + 1] - output[i][j] + vmap[i * n + j];
            }
        }
    }

    static void CalcAccumSumS(unsigned n, const vector<unsigned>& vmap, vector<vector<vector<unsigned>>>& output)
    {
        assert(vmap.size() == n*n);
        if (output.size() != 3)
            output.resize(3);
        for (unsigned l = 0; l < 3; ++l)
        {
            if (output[l].size() != (n + 1))
            {
                output[l].resize(n + 1);
                for (unsigned i = 0; i < output[l].size(); ++i)
                    output[l][i].resize(n + 1);
            }
        }
        for (unsigned l = 0; l < 3; ++l)
        {
            for (unsigned i = 0; i <= n; ++i)
            {
                output[l][i][0] = output[l][0][0] = 0;
            }
        }
        for (unsigned i = 0; i < n; ++i)
        {
            for (unsigned j = 0; j < n; ++j)
            {
                output[0][i + 1][j + 1] = output[0][i + 1][j] + output[0][i][j + 1] - output[0][i][j] + vmap[i * n + j];
                output[1][i + 1][j + 1] = output[1][i + 1][j] + output[1][i][j + 1] - output[1][i][j] + i * vmap[i * n + j];
                output[2][i + 1][j + 1] = output[2][i + 1][j] + output[2][i][j + 1] - output[2][i][j] + j * vmap[i * n + j];
            }
        }
    }

    static void CalcAccumSumS(unsigned n, const vector<unsigned>& vmap, double noise_amplitude, vector<vector<vector<double>>>& output)
    {
        static uniform_real_distribution<double> urd(0.0, 1.0);
        assert(vmap.size() == n*n);
        if (output.size() != 3)
            output.resize(3);
        for (unsigned l = 0; l < 3; ++l)
        {
            if (output[l].size() != (n + 1))
            {
                output[l].resize(n + 1);
                for (unsigned i = 0; i < output[l].size(); ++i)
                    output[l][i].resize(n + 1);
            }
        }
        for (unsigned l = 0; l < 3; ++l)
        {
            for (unsigned i = 0; i <= n; ++i)
            {
                output[l][i][0] = output[l][0][0] = 0;
            }
        }
        for (unsigned i = 0; i < n; ++i)
        {
            for (unsigned j = 0; j < n; ++j)
            {
                double d = vmap[i * n + j] + noise_amplitude * urd(dre);
                output[0][i + 1][j + 1] = output[0][i + 1][j] + output[0][i][j + 1] - output[0][i][j] + d;
                output[1][i + 1][j + 1] = output[1][i + 1][j] + output[1][i][j + 1] - output[1][i][j] + i * d;
                output[2][i + 1][j + 1] = output[2][i + 1][j] + output[2][i][j + 1] - output[2][i][j] + j * d;
            }
        }
    }

    void CalcAccumSum(vector<vector<unsigned>>& output) const { CalcAccumSumS(n, vmap, output); }
    void CalcAccumSum(vector<vector<vector<unsigned>>>& output) const { CalcAccumSumS(n, vmap, output); }
    void CalcAccumSum(double noise_amplitude, vector<vector<vector<double>>>& output) const { CalcAccumSumS(n, vmap, noise_amplitude, output); }

    static void FindBestMove(unsigned n, const vector<vector<vector<unsigned>>>& accum, vector<unsigned>& output_move)
    {
        output_move.resize(3); output_move[2] = 0;
        unsigned best_score = 0;
        for (unsigned k = 2; k <= n; ++k)
        {
            for (unsigned i = 0; i + k <= n; ++i)
            {
                for (unsigned j = 0; j + k <= n; ++j)
                {
                    unsigned a000 = accum[0][i][j];
                    unsigned a001 = accum[0][i][j + k];
                    unsigned a010 = accum[0][i + k][j];
                    unsigned a011 = accum[0][i + k][j + k];
                    unsigned a100 = accum[1][i][j];
                    unsigned a101 = accum[1][i][j + k];
                    unsigned a110 = accum[1][i + k][j];
                    unsigned a111 = accum[1][i + k][j + k];
                    unsigned a200 = accum[2][i][j];
                    unsigned a201 = accum[2][i][j + k];
                    unsigned a210 = accum[2][i + k][j];
                    unsigned a211 = accum[2][i + k][j + k];

                    unsigned s0 = a011 + a000 - a001 - a010;
                    unsigned s1 = a111 + a100 - a101 - a110;
                    unsigned s2 = a211 + a200 - a201 - a210;

                    if (best_score + 2 * s1 < (k - 1 + 2 * i) * s0)
                    {
                        best_score = (k - 1 + 2 * i) * s0 - 2 * s1;
                        output_move[0] = i; output_move[1] = j; output_move[2] = k;
                    }
                    if (2 * best_score + 2 * (s1 + s2) < 2 * (k - 1 + i + j) * s0)
                    {
                        best_score = (k - 1 + i + j) * s0 - (s1 + s2);
                        output_move[0] = i; output_move[1] = j; output_move[2] = k;
                    }
                    if (3 * best_score + 2 * s2 < (k - 1 + 2 * j) * s0)
                    {
                        best_score = ((k - 1 + 2 * j) * s0 - 2 * s2) / 3;
                        output_move[0] = i; output_move[1] = j; output_move[2] = k;
                    }
                }
            }
        }
    }

    static void FindBestMove(unsigned n, const vector<vector<vector<double>>>& accum, vector<unsigned>& output_move)
    {
        output_move.resize(3); output_move[2] = 0;
        double best_score = 0;
        for (unsigned k = 2; k <= n; ++k)
        {
            for (unsigned i = 0; i + k <= n; ++i)
            {
                for (unsigned j = 0; j + k <= n; ++j)
                {
                    double a000 = accum[0][i][j];
                    double a001 = accum[0][i][j + k];
                    double a010 = accum[0][i + k][j];
                    double a011 = accum[0][i + k][j + k];
                    double a100 = accum[1][i][j];
                    double a101 = accum[1][i][j + k];
                    double a110 = accum[1][i + k][j];
                    double a111 = accum[1][i + k][j + k];
                    double a200 = accum[2][i][j];
                    double a201 = accum[2][i][j + k];
                    double a210 = accum[2][i + k][j];
                    double a211 = accum[2][i + k][j + k];

                    double s0 = a011 + a000 - a001 - a010;
                    double s1 = a111 + a100 - a101 - a110;
                    double s2 = a211 + a200 - a201 - a210;

                    if (best_score + 2 * s1 < (k - 1 + 2 * i) * s0)
                    {
                        best_score = (k - 1 + 2 * i) * s0 - 2 * s1;
                        output_move[0] = i; output_move[1] = j; output_move[2] = k;
                    }
                    if (2 * best_score + 2 * (s1 + s2) < 2 * (k - 1 + i + j) * s0)
                    {
                        best_score = (k - 1 + i + j) * s0 - (s1 + s2);
                        output_move[0] = i; output_move[1] = j; output_move[2] = k;
                    }
                    if (3 * best_score + 2 * s2 < (k - 1 + 2 * j) * s0)
                    {
                        best_score = ((k - 1 + 2 * j) * s0 - 2 * s2) / 3;
                        output_move[0] = i; output_move[1] = j; output_move[2] = k;
                    }
                }
            }
        }
    }

    void FindBestMoveBase(vector<unsigned>& output_move)
    {
        output_move.resize(3); output_move[2] = 0;
        unsigned best_score = PenaltyBase();
        for (unsigned k = 2; k <= n; ++k)
        {
            for (unsigned i = 0; i + k <= n; ++i)
            {
                for (unsigned j = 0; j + k <= n; ++j)
                {
                    Rotate(i, j, k);
                    unsigned p = PenaltyBase();
                    RotateI(i, j, k);
                    if (best_score > p)
                    {
                        best_score = p;
                        output_move[0] = i; output_move[1] = j; output_move[2] = k;
                    }
                }
            }
        }
    }

    vector<vector<unsigned>> moves;
    vector<unsigned> penalties;

    void AddCurrentPenalty() { penalties.push_back(PenaltyBase()); }
    void MakeMove(const vector<unsigned>& move)
    {
        moves.push_back(move);
        Rotate(move);
        AddCurrentPenalty();
    }

    unsigned GetBestPenalty() const
    {
        unsigned best_penalty = penalties[0];
        for (unsigned p : penalties)
            best_penalty = min(p, best_penalty);
        return best_penalty;
    }

    void PrintMoves() const
    {
        unsigned best_index = 0;
        for (unsigned i = 1; i < penalties.size(); ++i)
        {
            if (penalties[i] < penalties[best_index])
            {
                best_index = i;
            }
        }
        // assert(penalties[best_index] == penalties.back());
        cout << best_index << endl;
        for (unsigned i = 0; i < best_index; ++i)
        {
            const auto& p = moves[i];
            cout << p[0] + 1 << " " << p[1] + 1 << " " << p[2] << endl;
        }
    }

    void SolveGreedy(double min_noise, double max_noise)
    {
        unsigned moves_so_far = 0;
        vector<unsigned> move;
        // vector<vector<unsigned>> accum;
        // vector<vector<vector<unsigned>>> accum;
        vector<vector<vector<double>>> accum;
        for (; moves_so_far < max_moves; ++moves_so_far)
        {
            // CalcAccumSum(accum);
            double noise = (min_noise * moves_so_far + max_noise * (max_moves - moves_so_far - 1)) / (max_moves - 1);
            CalcAccumSum(noise, accum);
            FindBestMove(n, accum, move);
            // FindBestMoveBase(move);
            if (move[2] != 0)
                MakeMove(move);
            else
                break;
        }
        // PrintMoves();
    }
    
    void FindBestLocalMove(vector<unsigned>& output_move)
    {
        output_move.resize(3); output_move[2] = 0;
        unsigned best_moves = 4;
        for (unsigned i = 0; i < n - 1; ++i)
        {
            for (unsigned j = 0; j < n - 1; ++j)
            {
                unsigned v00 = vmap[i * n + j];
                unsigned v01 = vmap[i * n + j + 1];
                unsigned v10 = vmap[i * n + j + n];
                unsigned v11 = vmap[i * n + j + n + 1];
                bool hp = ((v00 > v01) && (v10 > v11));
                bool vp = ((v00 > v10) && (v01 > v11));
                bool vpi = ((v00 < v10) && (v01 < v11));
                if (vp)
                {
                    output_move[0] = i; output_move[1] = j; output_move[2] = 2;
                    best_moves = 1;
                    break;
                }
                else if (hp)
                {
                    if (vpi)
                    {
                        // 3 moves required
                        if (best_moves > 3)
                        {
                            output_move[0] = i; output_move[1] = j; output_move[2] = 2;
                            best_moves = 3;
                        }
                    }
                    else
                    {
                        // 2 moves required
                        if (best_moves > 2)
                        {
                            output_move[0] = i; output_move[1] = j; output_move[2] = 2;
                            best_moves = 2;
                        }
                    }
                }
            }
            if (best_moves == 1)
                break;
        }
    }

    void FindBestLocal3Move(vector<unsigned>& output_move)
    {
        output_move.resize(3); output_move[2] = 0;
        vector<pair<unsigned, unsigned>> vp(9);
        vector<unsigned> vpos(9);
        double best_score = 0.0;
        for (unsigned i = 0; i < n - 2; ++i)
        {
            for (unsigned j = 0; j < n - 2; ++j)
            {
                for (unsigned k = 0; k < 9; ++k)
                {
                    vp[k] = make_pair(vmap[(i + k / 3) * n + (j + k % 3)], k);
                }
                sort(vp.begin(), vp.end());
                for (unsigned k = 0; k < 9; ++k)
                {
                    vpos[k] = vp[k].second;
                }
                unsigned h = CField3::Hash3FromPos(vpos);
                assert(n3_best_move.find(h) != n3_best_move.end());
                unsigned pen = n3_penalty[h];
                auto p = n3_best_move[h];
                unsigned moves_req = (p.first >> 3);
                double score = double(pen) / moves_req;
                if (score > best_score)
                {
                    best_score = score;
                    output_move = CField3::GetMove3FromIndex(p.first & 7);
                    output_move[0] += i;
                    output_move[1] += j;
                }
            }
        }
    }

    void LocalOptimization()
    {
        vector<unsigned> move;
        for (; moves.size() < max_moves; )
        {
            // FindBestLocalMove(move);
            FindBestLocal3Move(move);
            if (move[2] != 0)
                MakeMove(move);
            else
                break;
        }
    }

    void RemoveUselessMoves()
    {
        unsigned last_position = 0;
        for (unsigned i = 1; i < penalties.size(); ++i)
        {
            if (penalties[i] < penalties[last_position])
                last_position = i;
        }
        for (; moves.size() > last_position; )
        {
            RotateI(moves.back());
            moves.pop_back();
            penalties.pop_back();
        }
    }
};

int main()
{
    auto start_time = chrono::system_clock::now();
    dre.seed(100);
    CField3::BuildSolutionMap();
    CField fbase;
    fbase.Read();
    CField fbest = fbase, ftemp;
    fbest.SolveGreedy(0.0, 0.0);
    fbest.RemoveUselessMoves();
    fbest.LocalOptimization();
    unsigned best_penalty = fbest.GetBestPenalty();
    for (; best_penalty > 0;)
    {
        ftemp = fbase;
        ftemp.SolveGreedy(1.0, 1.0 * ftemp.n);
        ftemp.RemoveUselessMoves();
        ftemp.LocalOptimization();
        unsigned p = ftemp.GetBestPenalty();
        if (best_penalty > p)
        {
            best_penalty = p;
            fbest = ftemp;
        }
        auto now_time = chrono::system_clock::now();
        auto time_ms = chrono::duration_cast<std::chrono::milliseconds>(now_time - start_time);
        if (time_ms.count() > 1900)
            break;
    }
    fbest.PrintMoves();
    return 0;
}

Java rep HackerRank Solution


Copy Code Copied Use a different Browser

import java.io.*;
import java.util.*;

import static java.lang.Math.min;
import static java.lang.Math.max;

public class Solution {
    
    static class DynamicList<E> extends AbstractList<E> implements List<E> {
        
        static final private class Block<E> {

            int size;

            private int offset;
            private final E[] values;

            @SuppressWarnings("unchecked")
            Block(int capacity) {
                this.offset = 0;
                this.size = 0;
                this.values = (E[]) new Object[capacity];
            }

            E addFirst(final E value) {
                offset = (offset - 1) & (values.length-1);
                E last = values[offset];
                values[offset] = value;
                if (size < values.length) {
                    size++;
                }
                return last;
            }
            
            void addLast(final E value) {
                if (size == values.length)
                    return;
                values[(offset + size) & (values.length-1)] = value;
                size++;
            }
            
            E add(final int index, final E value) {
                E last = (size == values.length) ? values[(offset - 1) & (values.length-1)] : null;
                if (2*index < size) {
                    offset = (offset - 1) & (values.length-1);
                    for (int i = 0; i < index; i++) {
                        values[(offset + i) & (values.length-1)] = values[(offset + i + 1) & (values.length-1)];
                    }
                }
                else {
                    for (int i = (size == values.length) ? size-1 : size; i > index; i--) {
                        values[(offset + i) & (values.length-1)] = values[(offset + i - 1) & (values.length-1)];
                    }
                }
                values[(offset + index) & (values.length-1)] = value;
                if (size < values.length) size++;
                return last;
            }

            E set(final int index, final E value) {
                int i = (offset + index) & (values.length-1);
                E replaced = values[i];
                values[i] = value;
                return replaced;
            }
            
            E removeFirst() {
                E removed = values[offset];
                values[offset] = null;
                offset = (offset + 1) & (values.length-1);
                size--;
                return removed;
            }
            
            E remove(final int index) {
                E removed = values[(offset + index) & (values.length-1)];
                if (2*index < size) {
                    for (int i = index; i > 0; i--) {
                        values[(offset + i) & (values.length-1)] = values[(offset + i - 1) & (values.length-1)];                    
                    }
                    values[offset] = null;
                    offset = (offset + 1) & (values.length-1);
                }
                else {
                    for (int i = index + 1; i < size; i++) {
                        values[(offset + i - 1) & (values.length-1)] = values[(offset + i) & (values.length-1)];
                    }
                    values[(offset + size - 1) & (values.length-1)] = null;
                }
                size--;
                return removed;
            }
            
            E get(final int index) {
                return values[(offset + index) & (values.length-1)];
            }
        }
        
        public int size;
        
        private final int blockBitsize;
        private Block<E>[] data;
        
        @SuppressWarnings("unchecked")
        public DynamicList(int capacity) {
            byte blockBitsize = 4;
            while (capacity > 1L << (2*blockBitsize)) {
                blockBitsize++;
            }
            data = new Block[1 + (int) ((capacity-1) >> blockBitsize)];
            for (int i = 0; i < data.length; i++)
                data[i] = new Block<E>(1 << blockBitsize);
            this.size = 0;
            this.blockBitsize = blockBitsize;
        }
        
        public E get(final int index) {
            final int blockIndex = (int) (index >>> blockBitsize);
            final int valueIndex = (int) (index & (-1L >>> -blockBitsize));
            return data[blockIndex].get(valueIndex);
        }
        
        public E set(final int index, E value) {
            final int blockIndex = (int) (index >>> blockBitsize);
            final int valueIndex = (int) (index & (-1L >>> -blockBitsize));
            return data[blockIndex].set(valueIndex, value);
        }
        
        public void add(final int index, E value) {
            int blockIndex = (int) (index >>> blockBitsize);
            int valueIndex = (int) (index & (-1L >>> -blockBitsize));
            int blockSize = 1 << blockBitsize;
            if (data[blockIndex].size < blockSize) {
                data[blockIndex].add(valueIndex, value);
            }
            else {
                value = data[blockIndex].add(valueIndex, value);
                while (data[++blockIndex].size == blockSize) {
                    value = data[blockIndex].addFirst(value);
                }
                data[blockIndex].addFirst(value);
            }
            size++;
        }
        
        public E remove(final int index) {
            int blockIndex = (int) (index >>> blockBitsize);
            int valueIndex = (int) (index & (-1L >>> -blockBitsize));
            E removed = data[blockIndex].remove(valueIndex);
            while (++blockIndex < data.length && data[blockIndex].size > 0) {
                data[blockIndex-1].addLast(data[blockIndex].removeFirst());
            }
            size--;
            return removed;
        }

        public int size() {
            return size;
        }
    }

    static class ImmutableArray {
        
        ImmutableArray parent;
        int[] value;
        final int length;
        
        ImmutableArray(ImmutableArray arr, int... value) {
            this.parent = arr;
            this.value = value;
            length = (parent == null) ? 0 : (parent.length+1);
        }
        
        ImmutableArray add(int... value) {
            return new ImmutableArray(this, value);
        }
        
        public String toString() {
            if (parent == null)
                return "";
            return parent.toString() + (value[0]+1) + ' ' + (value[1]+1) + ' ' + value[2] + '\n';
        }
    }
    
    static class Grid implements Comparable<Grid> {
        
        private final int n;
        private final int[][] data;
        
        private final ImmutableArray moves;
        
        private int score = -1;
        private final int[] rowScores;
        private final int[] colScores;
        
        public Grid(int[][] grid) {
            n = grid.length;
            data = new int[n][n];
            for (int i = 0; i < n; i++)
                for (int j = 0; j < n; j++)
                    data[i][j] = grid[i][j];
            moves = new ImmutableArray(null, null);
            rowScores = new int[n];
            Arrays.fill(rowScores, -1);
            colScores = new int[n];
            Arrays.fill(colScores, -1);
        }
        
        public Grid(Grid parent, int row, int col, int k) {
            n = parent.n;
            data = new int[n][n];
            for (int i = 0; i < n; i++)
                if (i < row | i >= row+k)
                    data[i] = parent.data[i];
                else
                    data[i] = parent.data[i].clone();                

            for (int i = 0; i < k; i++) {
                for (int j = 0; j < k; j++)
                    data[row+i][col+j] = parent.data[row+k-j-1][col+i];
            }
            moves = parent.moves.add(row, col, k);
            
            rowScores = parent.rowScores.clone();
            colScores = parent.colScores.clone();
            for (int i = 0; i < k; i++) {
                rowScores[row+i] = -1;
                colScores[col+i] = -1;
            }
        }
        
        private static int evaluateScore(int[] v) {
            int score = 0;
            for (int i = 1; i < v.length; i++) {
                int vi = v[i];
                for (int j = 0; j < i; j++)
                    score += (v[j] - vi) >>> 31;
            }
            return score;
        }
        
        private void evaluateScore() {
            score = 0;
            for (int i = 0; i < n; i++) {
                if (rowScores[i] < 0)
                    rowScores[i] = evaluateScore(data[i]);
                score += rowScores[i];
            }
            int[] b = new int[n];
            for (int j = 0; j < n; j++) {
                if (colScores[j] < 0) {
                    for (int i = 0; i < n; i++)
                        b[i] = data[i][j];
                    colScores[j] = evaluateScore(b);                    
                }
                score += colScores[j];
            }
        }

        public int score() {
            if (score < 0)
                evaluateScore();
            return score;
        }
        
        public String toString() {
            return moves.length + "\n" + moves.toString();
        }

        public int compareTo(Grid o) {
            return (score() > o.score()) ? -1 : (score() < o.score()) ? 1 : (moves.length - o.moves.length);
        }
    }
    
    static int randIdx(Random rand, int size) {
        return min(rand.nextInt(size), rand.nextInt(size));
    }
    
    private static int MAX_GRIDS = 1250;
    private static int MAX_MOVES = 500;
    
    public static void main(String[] args) {
        long executionStart = System.currentTimeMillis();
        
        Scanner in = new Scanner(new BufferedReader(new InputStreamReader(System.in), 256 << 10));
        int n = in.nextInt();
        int[][] grid = new int[n][n];
        for (int i = 0; i < n; i++)
            for (int j = 0; j < n; j++)
                grid[i][j] = in.nextInt();
        in.close();
        
        List<Grid> grids = new DynamicList<Grid>(MAX_GRIDS+1);
        Grid srcGrid = new Grid(grid);
        grids.add(srcGrid);
        for (int k = n; k > 1 & k > n-7; k--) {
            for (int row = 0; row < n-k+1; row++)
                for (int col = 0; col < n-k+1; col++) {
                    Grid ng = srcGrid;
                    for (int i = 0; i < 3; i++) {
                        ng = new Grid(ng, row, col, k);

                        int insertionIndex = Collections.binarySearch(grids, ng);
                        if (insertionIndex < 0)
                            insertionIndex = ~insertionIndex;
                        grids.add(insertionIndex, ng);                        
                    }
            }
        }
        
        Grid best = grids.get(0);
        if (n > 1) {
            Random rand = new Random();
            long timePassed = System.currentTimeMillis() - executionStart;
            int maxk = max(2, (int) (n * 0.70));
            while (timePassed < 3600) {
                int idx = randIdx(rand, grids.size());
                while (grids.get(idx).moves.length >= MAX_MOVES) {
                    if (best.compareTo(grids.get(idx)) > 0)
                        best = grids.get(idx);
                    grids.remove(idx);
                    idx = randIdx(rand, grids.size());
                }
                if (grids.isEmpty())
                    break;

                int k = max(2, min(rand.nextInt(n+1), maxk));
                int row = rand.nextInt(n-k+1);
                int col = rand.nextInt(n-k+1);
                Grid ng = new Grid(grids.get(idx), row, col, k);

                int insertionIndex = Collections.binarySearch(grids, ng);
                if (insertionIndex < 0)
                    insertionIndex = ~insertionIndex;
                grids.add(insertionIndex, ng);

                if (grids.size() > MAX_GRIDS)
                    grids.remove(MAX_GRIDS);

                timePassed = System.currentTimeMillis() - executionStart;
                if (timePassed > 600)
                    maxk = max(2, (int) (n * 0.40));
                if (timePassed > 1200)
                    maxk = max(2, (int) (n * 0.30));
                if (timePassed > 1800)
                    maxk = max(2, (int) (n * 0.20));
                if (timePassed > 2400)
                    maxk = max(2, (int) (n * 0.15));
                if (timePassed > 3000)
                    maxk = 2;
            }
        }
        
        if (best.compareTo(grids.get(0)) > 0)
            best = grids.get(0);

        System.out.print(best);
        //System.out.print(best.score());
    }
}

 



Python 3 rep HackerRank Solution


Copy Code Copied Use a different Browser

import math
import os
import random
import re
import sys
import itertools  
import time 

def score(a):
    count = 0 
    for r in range(len(a)):
        for ind in itertools.combinations(range(len(a)), 2):
            if a[r][ind[0]] < a[r][ind[1]]:
                count += 1
    
    for c in range(len(a[0])):
        for ind in itertools.combinations(range(len(a[0])), 2):
            if a[ind[0]][c] < a[ind[1]][c]:
                count += 1
    return count

def rotate(a, r, c, d):
    seg   = [[a[i][c+j] for i in range(r+d, r-1, -1)] for j in range(d+1)]
    
    for i in range(d+1):
        for j in range(d+1):
            a[r+i][c+j] = seg[i][j]

def undo(a, r, c, d):
    seg   = [[a[r+i][j] for i in range(d+1)] for j in range(c+d, c-1, -1)]
    
    for i in range(d+1):
        for j in range(d+1):
            a[r+i][c+j] = seg[i][j]
    
def getRandom():
    r = random.randint(0, len(a)-2)
    c = random.randint(0, len(a)-2)
    d = random.randint(1, len(a)-1-max(r,c))
    
    return r, c, d

def countDes(a):
    arrayMax = []
    
    for i in range(len(a[0])-1):
        count  = 1
        curI   = 0 
    
        curMax = 1
        posMax = 0
    
        for j in range(1, len(a)):
            if a[j][i] < a[j-1][i]: 
                count+= 1
                if j == len(a) - 1:
                    if count > curMax:
                        curMax = count
                        posMax = curI
            else:
                if count > curMax:
                    curMax = count
                    posMax = curI
                
                count = 1
                curI  = j 
                        # length  #r     #c
        arrayMax.append([curMax, posMax, i])
    return arrayMax

def processNotRandom(a, getArray, history):
    maxPos  = -1
    maxScore = score(a)

    for i in range(len(getArray)):
    
        r = getArray[i][1]
        c = getArray[i][2]
        d = min(len(a)-1-max(r,c), getArray[i][0])
    
        rotate(a, r, c, d)
        sc = score(a)
        
        if sc > maxScore:
            maxPos   = i
            maxScore = sc
        undo(a, r, c, d)    
    
    if maxPos != -1:
        r = getArray[maxPos][1]
        c = getArray[maxPos][2]
        d = min(len(a)-1-max(r,c), getArray[maxPos][0])
        rotate(a, r, c, d)
        history.append([r+1, c+1, d+1])

n = int(input())
a = []

for _ in range(n):
    a.append(list(map(int, input().rstrip().split())))

# Write Your Code Here
curMax = score(a)
curSc  = curMax
start  = time.time()
Beta     = 0.8
Beta_increase = 0.8
history = []
maxScore  = score(a)
maxPos = -1
i = 0

while time.time() - start < 8.0 and len(history) < 500:

    r, c, d = getRandom()
    numRotate = 0
    
    for j in range(3):
            rotate(a, r, c, d)
            sc = score(a)
            
            if sc > maxScore:
                maxScore  = sc
                numRotate = j + 1
                
    rotate(a, r, c, d)    
   
    for j in range(numRotate):
        history.append([r+1, c+1, d+1])
        rotate(a, r, c, d)
        
print(len(history))        
for i in range(0, len(history)):
    print('{} {} {}'.format(history[i][0], history[i][1], history[i][2]))
                        



Python 2 rep HackerRank Solution


Copy Code Copied Use a different Browser

 



C rep HackerRank Solution


Copy Code Copied Use a different Browser

 

 

Warmup
Implementation
Strings
Sorting
Search
Graph Theory
Greedy
Dynamic Programming
Constructive Algorithms
Bit Manipulation
Recursion
Game Theory
NP Complete
Debugging

Leave a comment below

 

Related posts:

15 Days to learn SQL Hard SQL(Advanced)-SolutionWalking the Approximate Longest Path – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionBead Ornaments – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionTree Splitting – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionHexagonal Grid – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionSales by Match – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionQHEAP1 – HackerRank Solution
Tags: Cc++14full solutionGoHackerRank Solutionjavajava 15java 7java 8java8javascriptpypy 3Python 2python 3Sam's Puzzle (Approximate)
ShareTweetPin
admin

admin

Related Posts

Leetcode All Problems Solutions
Code Solutions

Exclusive Time of Functions – LeetCode Solution

by admin
October 5, 2022
0
30

Exclusive Time of Functions - LeetCode Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions...

Read more
Leetcode All Problems Solutions

Smallest Range Covering Elements from K Lists – LeetCode Solution

October 5, 2022
32
Leetcode All Problems Solutions

Course Schedule III – LeetCode Solution

October 5, 2022
25
Leetcode All Problems Solutions

Maximum Product of Three Numbers – LeetCode Solution

September 11, 2022
52
Leetcode All Problems Solutions

Task Scheduler – LeetCode Solution

September 11, 2022
119
Leetcode All Problems Solutions

Valid Triangle Number – LeetCode Solution

September 11, 2022
28
Next Post
15 Days to learn SQL Hard SQL(Advanced)-Solution

Comparing Numbers - HackerRank Solution

15 Days to learn SQL Hard SQL(Advanced)-Solution

Let's Echo- HackerRank Solution

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

You may also like

15 Days to learn SQL Hard SQL(Advanced)-SolutionWalking the Approximate Longest Path – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionBead Ornaments – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionTree Splitting – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionHexagonal Grid – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionSales by Match – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionQHEAP1 – HackerRank Solution

Categories

  • Algorithms
  • Anime
  • Biography
  • Business
  • Code Solutions
  • Cosmos
  • Countdowns
  • Culture
  • Economy
  • Education
  • Entertainment
  • Finance
  • Games
  • Hackerrank
  • Health
  • How to
  • Investment
  • LeetCode
  • Lifestyle
  • LINUX SHELL
  • Manga
  • News
  • Opinion
  • Politics
  • Sports
  • SQL
  • Tech
  • Travel
  • Uncategorized
  • Updates
  • World
  • DMCA
  • Home
  • My account
  • Privacy Policy
  • Top Posts

Recent Blogs

Leetcode All Problems Solutions

Exclusive Time of Functions – LeetCode Solution

October 5, 2022
Leetcode All Problems Solutions

Smallest Range Covering Elements from K Lists – LeetCode Solution

October 5, 2022
15 Days to learn SQL Hard SQL(Advanced)-Solution
Algorithms

Hacker Country – HackerRank Solution

May 27, 2022
68
Kakegurui
Anime

Top 10 Most Entertaining Kakegurui characters

May 12, 2022
11
15 Days to learn SQL Hard SQL(Advanced)-Solution
Code Solutions

Revising Aggregations – The Count Function EasySQL (Basic) – SQL – HackerRank Solution

May 30, 2022
0
7 THINGS YOU SHOULD KEEP PRIVATE: IN YOUR RELATIONSHIP
Entertainment

7 THINGS YOU SHOULD KEEP PRIVATE: IN YOUR RELATIONSHIP, Why it is so hard to keep it?

May 19, 2022
11

© 2022 ZeroPlusFour - Latest News & Blog.

No Result
View All Result
  • Home
  • Category
    • Business
    • Culture
    • Economy
    • Lifestyle
    • Health
    • Travel
    • Opinion
    • Politics
    • Tech
  • Landing Page
  • Support Forum
  • Contact Us

© 2022 ZeroPlusFour - Latest News & Blog.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?