Trapping Rain Water II – LeetCode Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.
Given an m x n
integer matrix heightMap
representing the height of each unit cell in a 2D elevation map, return the volume of water it can trap after raining.
Example 1:
Input: heightMap = [[1,4,3,1,3,2],[3,2,1,3,2,4],[2,3,3,2,3,1]] Output: 4 Explanation: After the rain, water is trapped between the blocks. We have two small ponds 1 and 3 units trapped. The total volume of water trapped is 4.
Example 2:
Input: heightMap = [[3,3,3,3,3],[3,2,2,2,3],[3,2,1,2,3],[3,2,2,2,3],[3,3,3,3,3]] Output: 10
Constraints:
m == heightMap.length
n == heightMap[i].length
1 <= m, n <= 200
0 <= heightMap[i][j] <= 2 * 104
C++ Trapping Rain Water II LeetCode Solution
October 11, 2016 9:51 AM
5.4K VIEWS
It takes me a long time to figure it out, but actually the idea is quite straightforward. Imagine the pool is surrounded by many bars. The water can only go out from the lowest bar. So we always start from the lowest boundary and keep pushing the bar from boundary towards inside. It works as if we are replacing the old bars with a bar higher than it.
See the following simple example:
4 4 4 4
4 0 1 2
4 4 4 4
it looks like we push the bar of 2 towards left and record the difference. Then you can use the same procedure with the following figure
4 4 4 4
4 0 2 2
4 4 4 4
int trapRainWater(vector<vector<int>>& heightMap) {
typedef pair<int,int> cell;
priority_queue<cell, vector<cell>, greater<cell>> q;
int m = heightMap.size();
if (m == 0) return 0;
int n = heightMap[0].size();
vector<int> visited(m*n, false);
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j) {
if (i == 0 || i == m-1 || j == 0 || j == n-1) {
if (!visited[i*n+j])
q.push(cell(heightMap[i][j], i*n+j));
visited[i*n+j] = true;
}
}
int dir[4][2] = {{0,1}, {0, -1}, {1, 0}, {-1, 0}};
int ans = 0;
while(!q.empty()) {
cell c = q.top();
q.pop();
int i = c.second/n, j = c.second%n;
for (int r = 0; r < 4; ++r) {
int ii = i+dir[r][0], jj = j+dir[r][1];
if (ii < 0 || ii >= m || jj < 0 || jj >= n || visited[ii*n+jj])
continue;
ans += max(0, c.first - heightMap[ii][jj]);
q.push(cell(max(c.first, heightMap[ii][jj]), ii*n+jj));
visited[ii*n+jj] = true;
}
}
return ans;
}
Java Trapping Rain Water II LeetCode Solution
public class Solution {
public class Cell {
int row;
int col;
int height;
public Cell(int row, int col, int height) {
this.row = row;
this.col = col;
this.height = height;
}
}
public int trapRainWater(int[][] heights) {
if (heights == null || heights.length == 0 || heights[0].length == 0)
return 0;
PriorityQueue<Cell> queue = new PriorityQueue<>(1, new Comparator<Cell>(){
public int compare(Cell a, Cell b) {
return a.height - b.height;
}
});
int m = heights.length;
int n = heights[0].length;
boolean[][] visited = new boolean[m][n];
// Initially, add all the Cells which are on borders to the queue.
for (int i = 0; i < m; i++) {
visited[i][0] = true;
visited[i][n - 1] = true;
queue.offer(new Cell(i, 0, heights[i][0]));
queue.offer(new Cell(i, n - 1, heights[i][n - 1]));
}
for (int i = 0; i < n; i++) {
visited[0][i] = true;
visited[m - 1][i] = true;
queue.offer(new Cell(0, i, heights[0][i]));
queue.offer(new Cell(m - 1, i, heights[m - 1][i]));
}
// from the borders, pick the shortest cell visited and check its neighbors:
// if the neighbor is shorter, collect the water it can trap and update its height as its height plus the water trapped
// add all its neighbors to the queue.
int[][] dirs = new int[][]{{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
int res = 0;
while (!queue.isEmpty()) {
Cell cell = queue.poll();
for (int[] dir : dirs) {
int row = cell.row + dir[0];
int col = cell.col + dir[1];
if (row >= 0 && row < m && col >= 0 && col < n && !visited[row][col]) {
visited[row][col] = true;
res += Math.max(0, cell.height - heights[row][col]);
queue.offer(new Cell(row, col, Math.max(heights[row][col], cell.height)));
}
}
}
return res;
}
}
Python 3 Trapping Rain Water II LeetCode Solution
class Solution:
def trapRainWater(self, heightMap: List[List[int]]) -> int:
if not heightMap or not heightMap[0]:
return 0
# Initial
# Board cells cannot trap the water
m, n = len(heightMap), len(heightMap[0])
if m < 3 or n < 3:
return 0
# Add Board cells first
heap = []
for i in range(m):
for j in range(n):
if i == 0 or i == m - 1 or j == 0 or j == n - 1:
heapq.heappush(heap, (heightMap[i][j], i, j))
heightMap[i][j] = -1
# Start from level 0
level, res = 0, 0
while heap:
height, x, y = heapq.heappop(heap)
level = max(height, level)
for i, j in [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)]:
if 0 <= i < m and 0 <= j < n and heightMap[i][j] != -1:
heapq.heappush(heap, (heightMap[i][j], i, j))
# If cell's height smaller than the level, then it can trap the rain water
if heightMap[i][j] < level:
res += level - heightMap[i][j]
# Set the height to -1 if the cell is visited
heightMap[i][j] = -1
return res
Array-1180
String-562
Hash Table-412
Dynamic Programming-390
Math-368
Sorting-264
Greedy-257
Depth-First Search-256
Database-215
Breadth-First Search-200
Tree-195
Binary Search-191
Matrix-176
Binary Tree-160
Two Pointers-151
Bit Manipulation-140
Stack-133
Heap (Priority Queue)-117
Design-116
Graph-108
Simulation-103
Prefix Sum-96
Backtracking-92
Counting-86
Sliding Window-73
Linked List-69
Union Find-66
Ordered Set-48
Monotonic Stack-47
Recursion-43
Trie-41
Binary Search Tree-40
Divide and Conquer-40
Enumeration-39
Bitmask-37
Queue-33
Memoization-32
Topological Sort-31
Geometry-30
Segment Tree-27
Game Theory-24
Hash Function-24
Binary Indexed Tree-21
Interactive-18
Data Stream-17
String Matching-17
Rolling Hash-17
Shortest Path-16
Number Theory-16
Combinatorics-15
Randomized-12
Monotonic Queue-9
Iterator-9
Merge Sort-9
Concurrency-9
Doubly-Linked List-8
Brainteaser-8
Probability and Statistics-7
Quickselect-7
Bucket Sort-6
Suffix Array-6
Minimum Spanning Tree-5
Counting Sort-5
Shell-4
Line Sweep-4
Reservoir Sampling-4
Eulerian Circuit-3
Radix Sort-3
Strongly Connected Componen-t2
Rejection Sampling-2
Biconnected Component-1