Word Search – LeetCode Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.
Given an m x n
grid of characters board
and a string word
, return true
if word
exists in the grid.
The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once.
Example 1:
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED" Output: true
Example 2:
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE" Output: true
Example 3:
Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB" Output: false
Constraints:
m == board.length
n = board[i].length
1 <= m, n <= 6
1 <= word.length <= 15
board
andword
consists of only lowercase and uppercase English letters.
C++ Word Search LeetCode Solution
bool exist(vector<vector<char>>& board, string word) {
for (unsigned int i = 0; i < board.size(); i++)
for (unsigned int j = 0; j < board[0].size(); j++)
if (dfs(board, i, j, word))
return true;
return false;
}
bool dfs(vector<vector<char>>& board, int i, int j, string& word) {
if (!word.size())
return true;
if (i<0 || i>=board.size() || j<0 || j>=board[0].size() || board[i][j] != word[0])
return false;
char c = board[i][j];
board[i][j] = '*';
string s = word.substr(1);
bool ret = dfs(board, i-1, j, s) || dfs(board, i+1, j, s) || dfs(board, i, j-1, s) || dfs(board, i, j+1, s);
board[i][j] = c;
return ret;
}
Java Word Search LeetCode Solution
public class Solution {
static boolean[][] visited;
public boolean exist(char[][] board, String word) {
visited = new boolean[board.length][board[0].length];
for(int i = 0; i < board.length; i++){
for(int j = 0; j < board[i].length; j++){
if((word.charAt(0) == board[i][j]) && search(board, word, i, j, 0)){
return true;
}
}
}
return false;
}
private boolean search(char[][]board, String word, int i, int j, int index){
if(index == word.length()){
return true;
}
if(i >= board.length || i < 0 || j >= board[i].length || j < 0 || board[i][j] != word.charAt(index) || visited[i][j]){
return false;
}
visited[i][j] = true;
if(search(board, word, i-1, j, index+1) ||
search(board, word, i+1, j, index+1) ||
search(board, word, i, j-1, index+1) ||
search(board, word, i, j+1, index+1)){
return true;
}
visited[i][j] = false;
return false;
}
}
Python 3 Word Search LeetCode Solution
def exist(self, board, word):
if not board:
return False
for i in xrange(len(board)):
for j in xrange(len(board[0])):
if self.dfs(board, i, j, word):
return True
return False
# check whether can find word, start at (i,j) position
def dfs(self, board, i, j, word):
if len(word) == 0: # all the characters are checked
return True
if i<0 or i>=len(board) or j<0 or j>=len(board[0]) or word[0]!=board[i][j]:
return False
tmp = board[i][j] # first character is found, check the remaining part
board[i][j] = "#" # avoid visit agian
# check whether can find "word" along one direction
res = self.dfs(board, i+1, j, word[1:]) or self.dfs(board, i-1, j, word[1:]) \
or self.dfs(board, i, j+1, word[1:]) or self.dfs(board, i, j-1, word[1:])
board[i][j] = tmp
return res
Array-1180
String-562
Hash Table-412
Dynamic Programming-390
Math-368
Sorting-264
Greedy-257
Depth-First Search-256
Database-215
Breadth-First Search-200
Tree-195
Binary Search-191
Matrix-176
Binary Tree-160
Two Pointers-151
Bit Manipulation-140
Stack-133
Heap (Priority Queue)-117
Design-116
Graph-108
Simulation-103
Prefix Sum-96
Backtracking-92
Counting-86
Sliding Window-73
Linked List-69
Union Find-66
Ordered Set-48
Monotonic Stack-47
Recursion-43
Trie-41
Binary Search Tree-40
Divide and Conquer-40
Enumeration-39
Bitmask-37
Queue-33
Memoization-32
Topological Sort-31
Geometry-30
Segment Tree-27
Game Theory-24
Hash Function-24
Binary Indexed Tree-21
Interactive-18
Data Stream-17
String Matching-17
Rolling Hash-17
Shortest Path-16
Number Theory-16
Combinatorics-15
Randomized-12
Monotonic Queue-9
Iterator-9
Merge Sort-9
Concurrency-9
Doubly-Linked List-8
Brainteaser-8
Probability and Statistics-7
Quickselect-7
Bucket Sort-6
Suffix Array-6
Minimum Spanning Tree-5
Counting Sort-5
Shell-4
Line Sweep-4
Reservoir Sampling-4
Eulerian Circuit-3
Radix Sort-3
Strongly Connected Componen-t2
Rejection Sampling-2
Biconnected Component-1
Leave a comment below