• Home
  • Top Posts
  • Code Solutions
  • How to
  • News
  • Trending
  • Anime
  • Health
  • Education
Friday, February 3, 2023
  • Login
Zeroplusfour
No Result
View All Result
  • Home
  • Top Posts
  • Code Solutions
  • How to
  • News
  • Trending
  • Anime
  • Health
  • Education
  • Home
  • Top Posts
  • Code Solutions
  • How to
  • News
  • Trending
  • Anime
  • Health
  • Education
No Result
View All Result
Zeroplusfour
No Result
View All Result
Home Code Solutions Hackerrank Algorithms

XOR key – HackerRank Solution

XOR key - HackerRank Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.

admin by admin
August 24, 2022
Reading Time: 1 min read
0
15 Days to learn SQL Hard SQL(Advanced)-Solution

15 Days to learn SQL Hard SQL(Advanced)-Solution alt text

Spread the love

Table of Contents

  • XOR key  – HackerRank Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.
  • Solutions of Algorithms Data Structures Hard HackerRank:
    • Here are all the Solutions of Hard , Advanced , Expert Algorithms of Data Structure of Hacker Rank , Leave a comment for similar posts
  • C++ replace HackerRank Solution
  • Java rep HackerRank Solution
  • Python 2 rep HackerRank Solution
  • Python 3 rep HackerRank Solution
  • C rep HackerRank Solution
    • Warmup Implementation Strings Sorting Search Graph Theory Greedy Dynamic Programming Constructive Algorithms Bit Manipulation Recursion Game Theory NP Complete Debugging
    • Leave a comment below
      • Related posts:

XOR key  – HackerRank Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions , All you need.

Solutions of Algorithms Data Structures Hard HackerRank:

Here are all the Solutions of Hard , Advanced , Expert Algorithms of Data Structure of Hacker Rank , Leave a comment for similar posts

C++ replace HackerRank Solution


Copy Code Copied Use a different Browser

#include <iostream>
#include <cstdio>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <algorithm>
#include <ctime>
using namespace std;

const int MB = 14;
const int N = 100000;
int arr[N], t, n, q, a, b, c;

int sorted_arrs[N * (MB + 2)];
struct XorqNode {
    int child[2], idx, len;
} nodes[512 + N * (MB - 6)]; // 
int arr_cnt, node_cnt;

int split(int idx, int len, int bm, int r) {
    int cnt = 0;
    for(int i = 0; i < len; i ++) {
        if((bm & arr[sorted_arrs[i + idx]]) == r) {
            sorted_arrs[arr_cnt++] = sorted_arrs[i + idx];
            cnt ++;
        }
    }
    return cnt;
}

void build(int root, int idx, int len, int bit = MB) {
    nodes[root].idx = idx;
    nodes[root].len = len;
    if(bit == -1) return;
    int bm = (1 << bit);
    int sidx1 = arr_cnt;
    int left_cnt = split(idx, len, bm, 0);
    int sidx2 = arr_cnt;
    int right_cnt = split(idx, len, bm, bm);
    assert(left_cnt + right_cnt == len);
    if(left_cnt) {
        nodes[root].child[0] = node_cnt;
        build(node_cnt ++, sidx1, left_cnt, bit - 1);
    } else {
        nodes[root].child[0] = -1;
    }
    if(right_cnt) {
        nodes[root].child[1] = node_cnt;
        build(node_cnt ++, sidx2, right_cnt, bit - 1);
    } else {
        nodes[root].child[1] = -1;
    }
}

bool search(int root, int from, int to) {
    int left = nodes[root].idx;
    int right = left + nodes[root].len - 1;
    int r = N;
    while(left <= right) {
        int mid = (left + right) / 2;
        int val = sorted_arrs[mid];
        if(val >= from) {
            r = val;
            right = mid - 1;
        } else {
            left = mid + 1;
        }
    }
    return r <= to;
}

int query(int root, int n, int from, int to, int bit = MB) {
    if(bit == -1) return 0;
    int mybit = ((1 << bit) & n) ? 1 : 0;
    if(nodes[root].child[1 - mybit] != -1 && search(nodes[root].child[1 - mybit], from, to)) {
        return query(nodes[root].child[1 - mybit], n, from, to, bit - 1) + (1 << bit);
    } else {

        return query(nodes[root].child[mybit], n, from, to, bit - 1);
    }
}

int query2(int n, int from, int to) {
    int r = 0;
    for(int i = from; i <= to; i ++) {
        r = max(r, arr[i] ^ n);
    }
    return r;
}

int main() {
    int cl = clock();
    int err_cnt = 0;
    for(scanf("%d", &t); t--; ) {
        arr_cnt = node_cnt = 0;
        scanf("%d %d", &n, &q);
        for(int i = 0; i < n; i ++) {
            scanf("%d", &arr[i]);
        }
        for(int i = 0; i < n; i ++) {
            sorted_arrs[arr_cnt++] = i;
        }
        node_cnt = 1;
        build(0, 0, n);
        for(int i = 0; i < q; i ++) {
            scanf("%d %d %d", &a, &b, &c);
            int r1 = query(0, a, b - 1, c - 1);
            cout << r1 << endl;
        }
    }
    //cerr << (clock() - cl) * 0.001 << endl;
    return 0;
}

Java rep HackerRank Solution


Copy Code Copied Use a different Browser

 

import java.io.*;
import java.util.Random;
import java.util.StringTokenizer;

public class Solution implements Runnable {

    // leave empty to read from stdin/stdout
    private static final String TASK_NAME_FOR_IO = "";

    // file names
    private static final String FILE_IN = TASK_NAME_FOR_IO + ".in";
    private static final String FILE_OUT = TASK_NAME_FOR_IO + ".out";

    BufferedReader in;
    PrintWriter out;
    StringTokenizer tokenizer = new StringTokenizer("");

    public static void main(String[] args) {
        new Solution().run();
    }

    int n, tSize;
    short[] a;
    Tree[] md;

    class Tree {

        short[] p;

        public Tree(short v) {
            p = new short[] {v};
        }

        @SuppressWarnings({"ConstantConditions"})
        public Tree(Tree l, Tree r) {
            int cnt = (l != null ? l.p.length : 0) + (r != null ? r.p.length : 0);
            p = new short[cnt];

            int lIdx = 0;
            int rIdx = 0;
            for (int i = 0; i < cnt; i++) {
                int lElem = (l != null && lIdx < l.p.length) ? l.p[lIdx] : Integer.MAX_VALUE;
                int rElem = (r != null && rIdx < r.p.length) ? r.p[rIdx] : Integer.MAX_VALUE;
                p[i] = (lElem < rElem) ? l.p[lIdx++] : r.p[rIdx++];
            }
        }

    }

    private void solve() throws IOException {
        int tc = nextInt();
        for (int tcIdx = 0; tcIdx < tc; tcIdx++) {
            n = nextInt();
            int m = nextInt();

            a = new short[n];
            for (int i = 0; i < n; i++) {
                a[i] = (short) nextInt();
            }

            buildTree();

            for (int i = 0; i < m; i++) {
                int x = nextInt();
                int l = nextInt() - 1;
                int r = nextInt() - 1;
                int answerFast = solveFast(x, l, r);
                out.println(answerFast);
            }
        }

        /*
        for (int tcIdx = 0; tcIdx < 666; tcIdx++) {
            stress();
        }
        */
    }

    Random r = new Random(1234567789L);

    private void stress() {
        n = 1000;
        a = new short[n];

        int m = 50000;

        for (int i = 0; i < n; i++) {
            a[i] = (short) r.nextInt(1 << 15);
        }

        buildTree();

        boolean failed = false;
        for (int i = 0; i < m; i++) {
            int x = r.nextInt(1 << 15);

            int lo = r.nextInt(n / 100);
            int hi = n / 100 + r.nextInt(n - n / 100);

            // lo = 1;
            // hi = 98302;

            if (lo > hi) {
                int t = lo; lo = hi; hi = t;
            }

            try {
                int p1 = solveFast(x, lo, hi);
                int p2 = solveNaive(x, lo, hi);
                if (p1 != p2) {
                    throw new IllegalStateException(p1 + " vs. " + p2);
                }
            } catch (Exception e) {
                e.printStackTrace();

                System.err.println("1");
                System.err.println(n + " " + 1);
                for (int j = 0; j < n; j++) {
                    System.err.print(a[j] + " ");
                }
                System.err.println();
                System.err.println(x + " " + lo + " " + hi);
                System.err.flush();
                failed = true;
                break;
            }
        }

        if (failed) {
            throw new IllegalStateException("FAILED");
        }
        System.out.println("OK");
    }

    private void buildTree() {
        tSize = 1;
        while (tSize < n) {
            tSize <<= 1;
        }

        //  1   2 3     4 5 6 7
        // [tsize - 1]  [tsize]
        int alloc = tSize << 1;
        md = new Tree[alloc];
        build(1);
    }

    private void build(int pos) {
        if (pos - tSize >= 0) {
            if (pos - tSize < n) {
                md[pos] = new Tree(a[pos - tSize]);
            }
            return;
        }

        int l = pos << 1;
        int r = l + 1;

        build(l);
        build(r);
        md[pos] = new Tree(md[l], md[r]);
    }

    int LOW_THRESHOLD = 1 << 6;

    int foundSegmentsIdx;
    Tree[] foundSegments = new Tree[1 << 10];
    int[] ll = new int[1 << 10];
    int[] rr = new int[1 << 10];

    @SuppressWarnings({"ToArrayCallWithZeroLengthArrayArgument"})
    private int solveFast(int x, int lo, int hi) {
        // split [lo,hi] into segments with increasing length
        foundSegmentsIdx = 0;
        searchSegments(1, 0, tSize - 1, lo, hi);

        // do not filter out anything, assign as is
        int m = foundSegmentsIdx;
        Tree[] segments = foundSegments;

        // fill in left and right boundaries
        for (int i = 0; i < m; i++) {
            ll[i] = 0;
            rr[i] = segments[i].p.length - 1;
        }

        // go through all bits and adjust
        int answer = 0;
        for (int bitIdx = 14; bitIdx >= 0; bitIdx--) {
            int singleBitMask = 1 << bitIdx;

            // find first and last element
            int v1 = Integer.MAX_VALUE;
            int v2 = Integer.MIN_VALUE;
            int total = 0;

            // next segments
            int nextSegmentsIdx = 0;
            for (int i = 0; i < m; i++) {
                int length = rr[i] - ll[i] + 1;

                // we shouldn't have any empty segments here
                if (length <= 0) {
                    throw new IllegalStateException();
                }

                // calculate using a trivial approach for short segments
                short[] v = segments[i].p;
                if (length < LOW_THRESHOLD) {
                    for (int j = ll[i]; j <= rr[i]; j++) {
                        int t = x ^ v[j];
                        if (t > answer) {
                            answer = t;
                        }
                    }
                    continue;
                }

                // calculate min/max values
                v1 = Math.min(v1, v[ll[i]]);
                v2 = Math.max(v2, v[rr[i]]);
                total += length;

                if (i != nextSegmentsIdx) {
                    segments[nextSegmentsIdx] = segments[i];
                    ll[nextSegmentsIdx] = ll[i];
                    rr[nextSegmentsIdx] = rr[i];
                }
                nextSegmentsIdx++;
            }
            m = nextSegmentsIdx;

            // shall we even proceed?
            if (total <= 0) {
                break;
            }

            // if the bits are equal, then we are just skipping the iteration as there is nothing to remove
            if ((v1 & singleBitMask) == (v2 & singleBitMask)) {
                continue;
            }

            // otherwise, there are elements that needs to be thrown away
            if ((x & singleBitMask) == 0) {

                // need to retain only ones
                //         [     ]
                // 0 0 0 0 1 1 1 1

                nextSegmentsIdx = 0;
                for (int i = 0; i < m; i++)
                    if (ll[i] <= rr[i]) {
                        // the segment is not empty
                        short[] v = segments[i].p;
                        int L = ll[i];
                        int R = rr[i];

                        int bitL = v[L] & singleBitMask;
                        int bitR = v[R] & singleBitMask;
                        if (bitL == bitR) {
                            if (bitL != 0) {
                                // we have all one bits, and have to retain them
                                if (i != nextSegmentsIdx) {
                                    segments[nextSegmentsIdx] = segments[i];
                                    ll[nextSegmentsIdx] = ll[i];
                                    rr[nextSegmentsIdx] = rr[i];
                                }
                                nextSegmentsIdx++;
                            }
                            continue;
                        }

                        // there is a median in the middle
                        while (L < R) {
                            int M = (L + R) >> 1;
                            if ((v[M] & singleBitMask) == 0) {
                                L = M + 1;
                            } else {
                                R = M;
                            }
                        }

                        /*
                        if ((v[L] & singleBitMask) == 0) {
                            throw new IllegalStateException("Median should point at the first non-zero");
                        }
                        if ((v[L - 1] & singleBitMask) != 0) {
                            throw new IllegalStateException("Incorrect median found");
                        }
                        */

                        // we have to retain ones, so discard all ELEMENTS in CURRENT SEGMENT to the left
                        ll[i] = L;

                        if (i != nextSegmentsIdx) {
                            segments[nextSegmentsIdx] = segments[i];
                            ll[nextSegmentsIdx] = ll[i];
                            rr[nextSegmentsIdx] = rr[i];
                        }
                        nextSegmentsIdx++;
                    }
                m = nextSegmentsIdx;
                // end of a case where we are retaining ones
            } else {
                // need to retain only zeroes
                // [     ]
                // 0 0 0 0 1 1 1 1

                nextSegmentsIdx = 0;
                for (int i = 0; i < m; i++)
                    if (ll[i] <= rr[i]) {
                        // the segment is not empty
                        short[] v = segments[i].p;
                        int L = ll[i];
                        int R = rr[i];
                        int bitL = v[L] & singleBitMask;
                        int bitR = v[R] & singleBitMask;
                        if (bitL == bitR) {
                            if (bitL == 0) {
                                // we have all zero bits, and have to retain them
                                if (i != nextSegmentsIdx) {
                                    segments[nextSegmentsIdx] = segments[i];
                                    ll[nextSegmentsIdx] = ll[i];
                                    rr[nextSegmentsIdx] = rr[i];
                                }
                                nextSegmentsIdx++;
                            }
                            continue;
                        }

                        // there is a median in the middle
                        while (L < R) {
                            int M = (L + R) >> 1;
                            if ((v[M] & singleBitMask) == 0) {
                                L = M + 1;
                            } else {
                                R = M;
                            }
                        }

                        /*
                        if ((v[L] & singleBitMask) == 0) {
                            throw new IllegalStateException("Median should point at the first non-zero");
                        }
                        if ((v[L - 1] & singleBitMask) != 0) {
                            throw new IllegalStateException("Incorrect median found");
                        }
                        */

                        // we have to retain zeroes, so discard all ELEMENTS in CURRENT SEGMENT to the right
                        rr[i] = L - 1;

                        if (i != nextSegmentsIdx) {
                            segments[nextSegmentsIdx] = segments[i];
                            ll[nextSegmentsIdx] = ll[i];
                            rr[nextSegmentsIdx] = rr[i];
                        }
                        nextSegmentsIdx++;
                    }
                m = nextSegmentsIdx;
            } // end of a case where we are retaining zeroes

        }

        // see if there is still something left
        for (int i = 0; i < m; i++)
            if (ll[i] <= rr[i]) {
                answer = Math.max(answer, x ^ segments[i].p[ll[i]]);
            }
        return answer;
    }

    private void searchSegments(int pos, int A, int B, int lo, int hi) {
        if (hi < A || lo > B || A > B || lo > hi) {
            return;
        }

        if (A == lo && B == hi) {
            foundSegments[foundSegmentsIdx++] = md[pos];
            return;
        }

        int posL = pos << 1;
        int posR = posL + 1;
        int mid = (A + B) / 2;

        searchSegments(posL, A, mid, lo, Math.min(hi, mid));
        searchSegments(posR, mid + 1, B, Math.max(lo, mid + 1), hi);
    }

    private int solveNaive(int x, int l, int r) {
        int result = 0;
        for (int i = l; i <= r; i++) {
            result = Math.max(result, x ^ a[i]);
        }
        return result;
    }

    public void run() {
        long timeStart = System.currentTimeMillis();

        boolean fileIO = TASK_NAME_FOR_IO.length() > 0;
        try {

            if (fileIO) {
                in = new BufferedReader(new FileReader(FILE_IN));
                out = new PrintWriter(new FileWriter(FILE_OUT));
            } else {
                in = new BufferedReader(new InputStreamReader(System.in));
                out = new PrintWriter(new OutputStreamWriter(System.out));
            }

            solve();

            in.close();
            out.close();
        } catch (IOException e) {
            throw new IllegalStateException(e);
        }
        long timeEnd = System.currentTimeMillis();

        if (fileIO) {
            System.out.println("Time spent: " + (timeEnd - timeStart) + " ms");
        }
    }

    private String nextToken() throws IOException {
        while (!tokenizer.hasMoreTokens()) {
            String line = in.readLine();
            if (line == null) {
                return null;
            }
            tokenizer = new StringTokenizer(line);
        }
        return tokenizer.nextToken();
    }

    private int nextInt() throws IOException {
        return Integer.parseInt(nextToken());
    }

}



Python 2 rep HackerRank Solution


Copy Code Copied Use a different Browser

# T = test cases (1-6)
# N = number of test integers (1-100000)
# Q = queries (1-50000)
# T
# N Q
# a_1 p_1 q_1 where
#	q_1,p_1 are (1-N)
#	a_1 is something (0 to 2^15)
# return maximum value

import sys
import math
class Node:
	def __init__(self):
		self.left = None
		self.right = None
		self.indices = None
		self.val = None

#traverse_tree(tree)
def traverse_tree(tree):
	if tree == None:
		return
	if tree.val != None:
		print tree.val
		print tree.indices
		return
	traverse_tree(tree.left)
	traverse_tree(tree.right)


# bia: binary string of the desired number
# p,q : p <= i <= q must hold for the matched x_i. 
# tree: whatever node we're looking at
# depth: depth of node in tree -  0 is root
def nearest_match(bia,p,q,tree,depth):


	if depth == 14:
		if bia[depth] == "1":
			if (tree.right != None):
				for i in tree.right.indices:
					if (i >= p) and (i <= q):
						return tree.right.val
			if (tree.left != None):
				for i in tree.left.indices:
					if (i >= p) and (i <= q):
						return tree.left.val
		
		else:
			if (tree.left != None):
				for i in tree.left.indices:
					if (i >= p) and (i <= q):
						return tree.left.val
			if (tree.right != None):	
				for i in tree.right.indices:
					if (i >= p) and (i <= q):
						return tree.right.val
		return -1


	if bia[depth] == "1":	
		if tree.right != None:
			v = nearest_match(bia,p,q,tree.right,depth+1)
			if v != -1:
				return v

		if tree.left != None:
			v = nearest_match(bia,p,q,tree.left,depth+1)
			return v

	if bia[depth] == "0":	
		if tree.left != None:
			v = nearest_match(bia,p,q,tree.left,depth+1)
			if v != -1:
				return v

		if tree.right != None:
			v = nearest_match(bia,p,q,tree.right,depth+1)
			return v

	return -1

def build_tree(N, xs):
	root = Node()
	cur_node = Node() 
	nodedict = {}
	for i in range(N):
		x_i = xs[i]		
# Get bits
		new_leaf = Node()
		try:
			nodedict[x_i].indices += [i+1]
			continue
		except KeyError:
			pass
		if ((x_i >> 14) & 1):
			if (root.right == None):
				root.right = Node()
			cur_node = root.right
		else:
			if (root.left == None):
				root.left = Node()
			cur_node = root.left

		for j in range(14):
			if ((x_i >> (13-j)) & 1):
				if (cur_node.right == None):
					if j == 13:
						cur_node.right = new_leaf
					else: 
						cur_node.right = Node()
				cur_node = cur_node.right
			else:
				if (cur_node.left == None):
					if j == 13:
						cur_node.left = new_leaf
					else:
						cur_node.left = Node()
				cur_node = cur_node.left
			# If at the leaf, add the index of x_i to the list.
			if j == 13:
				new_leaf.val = x_i
				new_leaf.indices = [i+1]
				nodedict[x_i] = new_leaf
	return root
				


# MAIN
# Initialize the tree, begin the loop that searches.
# With the root at depth 0, leaves will be at depth 15, because
# the range of values of x_i go from [0,2^15)

MAX_SIZE = int(math.pow(2,15) - 1)
T = int(sys.stdin.readline())

for _ in range(T):
	N, Q = map(int,sys.stdin.readline().split())
	xs = map(int,sys.stdin.readline().rstrip("\n").split())
#build the tree. lchild is 0, rchild is 1
	root = build_tree(N, xs)
#use dfs to check that it's all okay
#	traverse_tree(root)

#Now, search for the inverse, or backtrack to find the next smallest value.
	for y in range(Q):
		a,p,q = map(int,sys.stdin.readline().split())
		# Inverse of a
		ia = a ^ MAX_SIZE	
		# Binary string of a. Get digits and then format to length 15
		bia = bin(ia)[2:]
		bia = "0" * (15 - len(bia)) + bia
		# using this binary string, search for the nearest match in the tree.
		# i.e., the value in the tree whose xor with a is the largest.
		# this value is in fact the bitwise inverse of a.

		print nearest_match(bia,p,q,root,0) ^ a


#to do: write the search algorithm that finds the closest match. this shouldnt be too hard witht he binary string lookup.
#make sure it works, and then fail miserably when it doesnt run fast enough -___-



Python 3 rep HackerRank Solution


Copy Code Copied Use a different Browser

 



C rep HackerRank Solution


Copy Code Copied Use a different Browser

#define NDEBUG

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

struct header {
    int* head;
    int count;
};

int find(const int* base, int count, int p, int q)
{
    int left = 0;
    int right = count;
    int mid;
    int r;

    while (left < right) {
        mid = (left + right) / 2;
        r = base[mid];
        if (r > q) {
            right = mid; // else r <= q
        } else if (r < p) {
            left = mid + 1; // else p <= r <= q
        } else {
            return r;
        }
    }

    return -1;
}

int main(void)
{
    int T, t;
    int N, n;
    int Q, r;
    int a, p, q;

    struct header* info;
    int* table;

    int i, j;
    int ret;
    int bit;
    int next_bit;
    int low;
    int hlow;
    int parent;
    int child_low;
    int child_high;
    int low_ind;
    int high_ind;

    info = (struct header*)malloc(sizeof(struct header) * 65535);
    assert(info != NULL);

    table = (int*)malloc(sizeof(int) * 1600000);
    assert(table != NULL);

    ret = scanf("%d", &T);
    assert(ret == 1);
    assert(1 <= T && T <= 6);

    for (t = 0; t < T; ++t) {
        ret = scanf("%d%d", &N, &Q);
        assert(ret == 2);
        assert(1 <= N && N <= 100000);
        assert(1 <= Q && Q <= 50000);

        info[0].head = table;
        info[0].count = N;

        low = 0;

        for (n = 0; n < N; ++n) {
            ret = scanf("%d", table + n);
            assert(ret == 1);
            assert(0 <= table[n] && table[n] < 0x8000);

            if ((table[n] & 0x4000) == 0)
                ++low;
        }
        info[1].count = low;
        info[2].count = N - low;

        // first iteration

        bit = 0x4000;
        next_bit = bit >> 1;

        info[1].head = table + N;
        info[2].head = info[1].head + low;

        low = 0;
        hlow = 0;

        low_ind = 0;
        high_ind = 0;
        for (i = 0; i < N; ++i) {
            if ((table[i] & bit) == 0) {
                info[1].head[low_ind++] = i;
                if ((table[i] & next_bit) == 0)
                    ++low;
            } else {
                info[2].head[high_ind++] = i;
                if ((table[i] & next_bit) == 0)
                    ++hlow;
            }
        }
        assert(low_ind == info[1].count);
        assert(high_ind == info[2].count);

        info[3].count = low;
        info[4].count = low_ind - low;
        info[5].count = hlow;
        info[6].count = high_ind - hlow;


        parent = 0;
        for (bit = next_bit; bit > 0; bit = next_bit) {
            next_bit = bit >> 1;
            for (i = 0; i < 0x4000; i += bit) {
                ++parent;
                child_low = parent + parent + 1;
                child_high = child_low + 1;
                info[child_low].head = info[child_low - 1].head + info[child_low - 1].count;
                info[child_high].head = info[child_low].head + info[child_low].count;

                low = 0;
                hlow = 0;

                low_ind = 0;
                high_ind = 0;
                for (j = 0; j < info[parent].count; ++j) {
                    if ((table[info[parent].head[j]] & bit) == 0) {
                        info[child_low].head[low_ind++] = info[parent].head[j];
                        if ((table[info[parent].head[j]] & next_bit) == 0)
                            ++low;
                    } else {
                        info[child_high].head[high_ind++] = info[parent].head[j];
                        if ((table[info[parent].head[j]] & next_bit) == 0)
                            ++hlow;
                    }
                }
                assert(low_ind == info[child_low].count);
                assert(high_ind == info[child_high].count);

                if (next_bit > 0) {
                    j = child_low + child_low + 1;
                    info[j++].count = low;
                    info[j++].count = low_ind - low;
                    info[j++].count = hlow;
                    info[j++].count = high_ind - hlow;
                }
            }
        }

        for (r = 0; r < Q; ++r) {
            ret = scanf("%d%d%d", &a, &p, &q);
            assert(ret == 3);
            assert(0 <= a && a < 0x8000);
            assert(1 <= p && p <= q && q <= N);
            --p;
            --q;

            i = 0;
            for (bit = 0x4000; bit > 0; bit >>= 1) {
                if ((a & bit) == 0) {
                    i = i + i + 2;
                    if (find(info[i].head, info[i].count, p, q) < 0)
                        --i;
                } else {
                    i = i + i + 1;
                    if (find(info[i].head, info[i].count, p, q) < 0)
                        ++i;
                }
                assert(find(info[i].head, info[i].count, p, q) >= 0);
            }

            j = find(info[i].head, info[i].count, p, q);
            assert(j >= 0);
            printf("%d\n", a ^ table[j]);
        }
    }

    free(table);
    free(info);

    return 0;
}

 

Warmup
Implementation
Strings
Sorting
Search
Graph Theory
Greedy
Dynamic Programming
Constructive Algorithms
Bit Manipulation
Recursion
Game Theory
NP Complete
Debugging

Leave a comment below

 

Related posts:

15 Days to learn SQL Hard SQL(Advanced)-SolutionXOR Strings 2 – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionSum vs XOR – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionXOR Matrix – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionTwo Strings Game – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionQueue using Two Stacks – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionTree Flow – HackerRank Solution
Tags: Cc++14full solutionGoHackerRank Solutionjavajava 15java 7java 8java8javascriptpypy 3Python 2python 3XOR key
ShareTweetPin
admin

admin

Related Posts

Leetcode All Problems Solutions
Code Solutions

Exclusive Time of Functions – LeetCode Solution

by admin
October 5, 2022
0
30

Exclusive Time of Functions - LeetCode Solution Java , Python 3, Python 2 , C , C++, Best and Optimal Solutions...

Read more
Leetcode All Problems Solutions

Smallest Range Covering Elements from K Lists – LeetCode Solution

October 5, 2022
32
Leetcode All Problems Solutions

Course Schedule III – LeetCode Solution

October 5, 2022
27
Leetcode All Problems Solutions

Maximum Product of Three Numbers – LeetCode Solution

September 11, 2022
53
Leetcode All Problems Solutions

Task Scheduler – LeetCode Solution

September 11, 2022
119
Leetcode All Problems Solutions

Valid Triangle Number – LeetCode Solution

September 11, 2022
28
Next Post
15 Days to learn SQL Hard SQL(Advanced)-Solution

2's complement - HackerRank Solution

15 Days to learn SQL Hard SQL(Advanced)-Solution

Changing Bits - HackerRank Solution

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

You may also like

15 Days to learn SQL Hard SQL(Advanced)-SolutionXOR Strings 2 – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionSum vs XOR – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionXOR Matrix – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionTwo Strings Game – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionQueue using Two Stacks – HackerRank Solution 15 Days to learn SQL Hard SQL(Advanced)-SolutionTree Flow – HackerRank Solution

Categories

  • Algorithms
  • Anime
  • Biography
  • Business
  • Code Solutions
  • Cosmos
  • Countdowns
  • Culture
  • Economy
  • Education
  • Entertainment
  • Finance
  • Games
  • Hackerrank
  • Health
  • How to
  • Investment
  • LeetCode
  • Lifestyle
  • LINUX SHELL
  • Manga
  • News
  • Opinion
  • Politics
  • Sports
  • SQL
  • Tech
  • Travel
  • Uncategorized
  • Updates
  • World
  • DMCA
  • Home
  • My account
  • Privacy Policy
  • Top Posts

Recent Blogs

Leetcode All Problems Solutions

Exclusive Time of Functions – LeetCode Solution

October 5, 2022
Leetcode All Problems Solutions

Smallest Range Covering Elements from K Lists – LeetCode Solution

October 5, 2022
Biography

Mouni Roy Net Worth, Age, Height , Achivements and more

September 8, 2022
0
Shark Tank
Business

Bee Free Honee Shark Tank Update

September 3, 2022
0
Biography

Triple H Net Worth, Age, Height , Achivements and more

September 8, 2022
0
Zoro’s strongest attack in the series
Anime

Zoro’s strongest attack of the series One Piece

May 18, 2022
9

© 2022 ZeroPlusFour - Latest News & Blog.

No Result
View All Result
  • Home
  • Category
    • Business
    • Culture
    • Economy
    • Lifestyle
    • Health
    • Travel
    • Opinion
    • Politics
    • Tech
  • Landing Page
  • Support Forum
  • Contact Us

© 2022 ZeroPlusFour - Latest News & Blog.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT
Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?